
- (14) 1. a) Compute $\int_{2}^{3} \int_{1/x}^{x^{2}} x^{2}y \,dy \,dx$.
 - b) Write this iterated integral in dx dy order. You may want to begin by sketching the area over which the double integral is evaluated. You are **not** asked to evaluate the dx dy result, which may be one or more iterated integrals.
- (12) 2. Suppose Q is the collection of points in the xy-plane which are both inside the first quadrant and outside the unit circle. Compute $\int \int_Q \frac{1}{(x^2+y^2+1)^3} dA$.
- (10) 3. Compute the volume of the solid bounded by the xz-plane, the yz-plane, the xy-plane, the planes x = 1 and y = 1, and the surface $z = x^2 + y^4$.
- (16) 4. Find the maximum and minimum values of F(x, y, z, w) = x + 2y + 3zw for points (x, y, z, w) in \mathbb{R}^4 satisfying $x^2 + y^2 + z^2 + w^2 = 1$.
- (16) 5. Integrate the function y over the region in the first quadrant of the xy-plane bounded by the curves $y = \frac{1}{x}$ and $y = \frac{4}{x}$ and y = 9x and y = 16x using the change of variables technique. I suggest you try the variables s = xy and $t = \frac{y}{x}$. Describe the corresponding region in the st-plane, compute the area distortion factor (Jacobian), and rewrite the double integral as a ds dt integral.

Comment The function, the Jacobian, and the region *should* interact to produce a result easy to deal with, since this is an invented example. The answer is $\frac{14}{3}$.

(12) 6. In this problem H is the upper half of the unit sphere in \mathbb{R}^3 : those (x, y, z) with $x^2 + y^2 + z^2 \le 1$ and $z \ge 0$. There is a right circular cone whose vertex is (0,0,0) and whose axis of symmetry is the positive z-axis which divides the volume of H into two equal parts. Find the angle α that determines this cone. The diagram defines α , which is the angle that the positive z-axis makes with a line on the cone through the vertex.

- (20) 7. a) Suppose C is the boundary of the unit circle oriented in the usual (counterclockwise) fashion. Compute $\int_C \left(y^2 + \sqrt{1 + \cosh(\cos x)}\right) dx + (x + e^{\arctan y}) dy$.
 - b) Suppose D is the path consisting of three straight line segments, first from (1,2) to (4,-3), then from (4,-3) to (2,6), and then from (2,6) to (3,4). Compute $\int_D (2xy^3) \ dx + (3x^2y^2 + 4y^3) \ dy$.

Second Exam for Math 291, section 1

November, 2002

Do all problems, in any order.

Show your work. An answer alone may not receive full credit.

You may use a calculator only during the last 20 minutes.

No notes may be used on this exam. A page with formulas will be supplied.

Problem	Possible	Points
Number	Points	Earned:
1	14	
2	12	
3	10	
4	16	
5	16	
6	12	
7	20	
Total Points Earned:		