$291:01$ A curve problem's answers $2/18/2003$

Finding a nice parameterization of the curve is important. Generally when two surfaces, even two nicely described surfaces, intersect, finding a good parameterization of the intersection curve can be difficult. Here the equation $x^2 + y^2 = 1$ provides a valuable start. I'll try $x = \cos t$ and $y = \sin t$. Then $z = y^2$ tells us that $z = (\sin t)^2$. So the parameterization as a "position vector is $\mathbf{r}(t) = (\cos t)\mathbf{i} + (\sin t)\mathbf{j} + (\sin t)^2\mathbf{k}$.

ivow we need to plan for the computation. It will be **easy** to compute **r** and **r** and r''' and find their values when $t = \frac{\pi}{4}$ which corresponds to the point $p = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, \frac{1}{2}\right)$. $\overline{2}$, $\overline{\sqrt{2}}$, $\overline{2}$). $\overline{2}$, $\frac{1}{2}$. After I get these three derivatives, I will substitute $t=\frac{1}{4}$ to get specific vectors, and use those in the formulas below:

$$
\mathbf{T}\left(\frac{\pi}{4}\right) = \frac{\mathbf{r}'\left(\pi/4\right)}{\|\mathbf{r}'\left(\pi/4\right)\|} \qquad \kappa\left(\frac{\pi}{4}\right) = \frac{\|\mathbf{r}'\left(\pi/4\right) \times \mathbf{r}''\left(\pi/4\right)\|}{\|\mathbf{r}'\left(\pi/4\right)\|^3} \qquad \tau\left(\frac{\pi}{4}\right) = \frac{(\mathbf{r}'\left(\pi/4\right) \times \mathbf{r}''\left(\pi/4\right)) \cdot \mathbf{r}'''\left(\pi/4\right)}{\|\mathbf{r}'\left(\pi/4\right) \times \mathbf{r}''\left(\pi/4\right)\|^2}
$$

This is all straightforward. But how about $N(\frac{\pi}{2})$? I don't think there is any way to avoid some pain here. We need to compute $T(t)$ and differentiate it with respect to t (a use of the quotient rule), and then divide by the magnitude of the result. But we only need to do this at $\frac{1}{4}$. When we get $\mathbf{N}(\frac{1}{4})$, then $\mathbf{B}(\frac{1}{4}) = \mathbf{T}(\frac{1}{4}) \times \mathbf{N}(\frac{1}{4})$, another cross-product.

The Computation sin(2t)

 $\mathbf{r}(t) = (\cos t)\mathbf{i} + (\sin t)\mathbf{j} + (\sin t)^2\mathbf{k}$, so $\mathbf{r}'(t) = (-\sin t)\mathbf{i} + (\cos t)\mathbf{j} + 2(\sin t)(\cos t)\mathbf{k}$. Therefore $\mathbf{r} \cdot (\frac{1}{4}) = -\frac{1}{\sqrt{2}}\mathbf{i} + \frac{1}{\sqrt{2}}\mathbf{j} + \mathbf{i}\mathbf{k}$ $\frac{1}{2}$ **l** + $\frac{1}{\sqrt{2}}$ **J** + **1K** and $\frac{1}{2}$ j+1k and $\|{\bf r}'(t)\|=\sqrt{1+(\sin(2t))^2}$ (this isn't so bad) and $\|{\bf r}'(\frac{\pi}{4})\|=\sqrt{2}$ Also $\mathbf{r}''(t) = (-\cos t)\mathbf{i} + (-\sin t)\mathbf{j} + 2\cos(2t)\mathbf{k}$ so that $\mathbf{r}''(\frac{1}{4}) = -\frac{1}{\sqrt{2}}\mathbf{i} - \frac{1}{\sqrt{2}}\mathbf{j} + \frac{1}{\sqrt{2}}\mathbf{k}$ $\frac{1}{2}$ **i** $-\frac{1}{\sqrt{2}}$ **j** + U**K**. **F** i 2^{\bullet} is a distribution of \mathcal{O} is a set of \math ${\bf r}^{\text{m}}(t) = (\sin t){\bf i} + (-\cos t){\bf j} - 4\sin(2t){\bf k}$. with ${\bf r}^{\text{m}}(\frac{1}{4}) = \frac{1}{\sqrt{2}}{\bf i} - \frac{1}{\sqrt{2}}{\bf j} \frac{1}{2}$ **i** $-\frac{1}{\sqrt{2}}$ **j** -4 **K**. $\frac{1}{2}$ J – 4k.

 \mathbf{A} the easy studies of \mathbf{A} $\mathbf{T}(\frac{\pi}{4}) = \frac{-\frac{1}{\sqrt{2}}\mathbf{i} + \frac{1}{\sqrt{2}}\mathbf{j} + i\mathbf{k}}{\sqrt{2}} = -\frac{1}{2}\mathbf{i} + \frac{1}{2}\mathbf{j} + \frac{1}{\sqrt{2}}\mathbf{k}$ (a unit v $\frac{1}{2}$ **k** (a unit vector!). For κ we need $\mathbf{r}'(\pi/4) \times \mathbf{r}''(\pi/4) =$ $\det\begin{pmatrix} \mathbf{i} & \mathbf{j} & \ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \end{pmatrix}$ i je postala na se n $-\overline{\sqrt{2}}$ $\overline{\sqrt{2}}$ 1 $=$ 2 $\sqrt{ }$ $-\frac{1}{\sqrt{2}}$ $-\frac{1}{\sqrt{2}}$ 0 $\sqrt{ }$ $\int = \frac{1}{\sqrt{2}} \mathbf{i} - \frac{1}{\sqrt{2}} \mathbf{j} + \frac{1}{\sqrt{2}} \mathbf{k}$ $\frac{1}{2}$ **l** $-\frac{1}{\sqrt{2}}$ **J** $+$ **K** will $\frac{1}{2}$ **j** + **k** which has magnitude $\sqrt{2}$. So divide this by $\|\mathbf{r}'(\frac{\pi}{4})\|^3 = 2^{3/2}$ and get $\kappa(\frac{\pi}{4}) = \frac{1}{2}$. The "top" of τ is $\left(\frac{1}{\sqrt{2}}\mathbf{i} - \frac{1}{\sqrt{2}}\mathbf{j} + \frac{1}{\sqrt{2}}\mathbf{k}\right)$ $\frac{1}{2}$ l – $\frac{1}{\sqrt{2}}$ J + K $\left| \cdot \right|$. $\frac{1}{2} \textbf{j} + \textbf{k} \Big) \cdot \Big(\frac{1}{\sqrt{2}} \textbf{i} - \frac{1}{\sqrt{2}} \textbf{j} \frac{1}{2}$ **i** $-\frac{1}{\sqrt{2}}$ **j** -4 **K** $)$ $\frac{1}{2}$ J – 4k) $\sqrt{2}$ $\frac{1}{2} = \frac{1}{2} + \frac{1}{2} - 4 = -3$ and the bottom is 2, so the answer seems to be $-\frac{1}{2}$.

And now for some pain:

The "pain" is differentiation of $\mathbf{T}(t) = \frac{\sqrt{1+(\sin(2t))^2 + \sin(2t)^2}}{\sqrt{1+(\sin(2t))^2}}$. I will $\frac{1}{(1+(\sin(2t))^2}$. I will write this as $\frac{1}{\text{Bottom}},$ so that its derivative is $\frac{(10p)(Bottom) - (Bottom)(10p)}{(Bottom)^2}$, which I must compute at $t = \frac{\pi}{4}$. Let's see: $(\text{Bottom})^2 = 2$, and $\text{Bottom} = \frac{1}{2}(1 + (\sin(2t))^2)^{-1/2} 2 \sin(2t) \cos(2t) 2$ which is 0 when $t = \frac{1}{4}$ (1 think this is correct – nice work with the Chain Rule!). (Top) is \mathbf{r} ($\frac{1}{4}$) = p ¹ $\frac{1}{2}$ **l** – $\frac{1}{\sqrt{2}}$ **J** + U**K**, so $\frac{1}{2}$ J + 0k, so 1 ($\frac{1}{4}$) = $-\frac{1}{2}$ 1 - $\frac{1}{2}$ J + 0k. Adjusting the length to get a unit vector,

$$
\mathbf{N}\left(\frac{\pi}{4}\right) = -\frac{1}{\sqrt{2}}\mathbf{i} - \frac{1}{\sqrt{2}}\mathbf{j} + 0\mathbf{k}.
$$
 Finally, $\mathbf{B}\left(\frac{\pi}{4}\right) = \mathbf{T}\left(\frac{\pi}{4}\right) \times \mathbf{N}\left(\frac{\pi}{4}\right) = \det\begin{pmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -\frac{1}{2} & \frac{1}{2} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \end{pmatrix} =$
 $\frac{1}{2}\mathbf{i} - \frac{1}{2}\mathbf{i} + \frac{1}{2}\mathbf{k}$ which is also a unit vector as "theory" predicts

 $\frac{1}{2}$ **i** $\frac{1}{2}$ **j** $+$ $\frac{1}{\sqrt{2}}$ **k**, which is also a unit vector, as "theory" predicts.

OVER

The frame $\{T, N, B\}$ is "orthonormal": three unit vectors, mutually perpendicular. I checked this! The curvature of a space curve is always nonnegative as I explained in class. The torsion may have any sign. Here is a possible picture of the situation:

The curve of intersection of the circular cylinder $x^+ + y^- = 1$ and the parabolic cylinder $z = y^2$ is shown approximately and the point $p = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, \frac{1}{2}\right)$ is $\frac{1}{2}$, $\frac{1}{\sqrt{2}}$, $\frac{1}{2}$ | is inc $\left(\frac{1}{2},\frac{1}{2}\right)$ is indicated, along with a possible picture of the Frenet frame at p.