(20) 1. Sketch the three level curves of the function $W(x,y) = \frac{y}{x^2+1}$ which pass through the points P = (0,2) and Q = (2,0) and R = (1,-1). Label each curve with the appropriate function value. Be sure that your drawing is clear and unambiguous.

Also, sketch on the same axes the vectors of the gradient vector field ∇W at the points P and Q and R and S and T. The point S = (0, -2) and the point T = (-2, 0).

- (18) 2. Suppose $f(x, y, z) = \sqrt{x + 3y^2 2z}$. Then f(5, 1, 2) = 2.
 - a) Find a linear approximation to f(5.01, .98, 2.03).

You are *not* asked for an exact value, but for the linear approximation to that value. You do **not** need to "simplify" your answer!

b) In what direction will f increase most rapidly at (5,1,2)? Write a <u>unit</u> vector in that direction.

You do not need to "simplify" your answer!

- c) What is the directional derivative of f at (5, 1, 2) in the direction found in b)? You do **not** need to "simplify" your answer!
- (18) 3. Suppose $\mathbf{F}(x,y,z) = P(x,y,z)\mathbf{i} + Q(x,y,z)\mathbf{j} + R(x,y,z)\mathbf{k}$ where P, Q, and R are continuously differentiable functions. Suppose C is the surface of the unit cube in \mathbb{R}^3 $(0 \le x \le 1 \text{ and } 0 \le y \le 1 \text{ and } 0 \le z \le 1)$, \mathbf{n} is the outward unit normal to C, and D is the interior of the unit cube. Prove that $\iint_C \mathbf{F} \cdot \mathbf{n} \, dS = \iiint_D \operatorname{div} \mathbf{F}(x,y,z) \, dV$.
- (20) 4. Find four points in \mathbb{R}^3 which have positive and equal distance from each other. Then find the cosine of the angle between two faces of a regular tetrahedron.
- (20) 5. Suppose $\mathbf{F} = -2xz\mathbf{i} + y^2\mathbf{k}$. Note There is no **j** component in \mathbf{F} .
 - a) Compute curl **F**.
 - b) Compute the outward unit normal **n** for the sphere $x^2 + y^2 + z^2 = a^2$.
 - c) If R is any region on the sphere $x^2 + y^2 + z^2 = a^2$, verify that $\iint_R (\text{curl } \mathbf{F}) \cdot \mathbf{n} \, dS = 0$.
 - d) Suppose C is a simple closed curve on the sphere $x^2 + y^2 + z^2 = a^2$. Show that the line integral $\int_C -2xz \, dx + y^2 \, dz = 0$.

Comment Do *not* attempt a direct computation! Use c) and one of the big theorems.

This problem was taken in part from an MIT practice exam.

(16) 6. Suppose that a smooth plane curve is parameterized by arc length s, and that for $0 \le s \le 10$, the curvature as a function of arc length is given by $\kappa(s) = 2^{-\frac{s}{10}}$. Suppose that when s = 0, the position on the curve is (0,0) and the value of \mathbf{T} is \mathbf{i} and the value of \mathbf{N} is \mathbf{j} , as shown.

- (20) 7. Suppose $f(x, y, z) = xy^2z^3$.
 - a) Compute $\int_0^1 \int_0^x \int_0^y f(x, y, z) dz dy dx$.
 - b) Write the integral in a) as a sum of one or more iterated integrals in dx dy dz order. You are *not* asked to integrate your answer, only to set it up.
- (16) 8. The average value of a function f defined in a region R of \mathbb{R}^3 is $\frac{\iiint_R f \, dV}{\iiint_R dV}$. Compute the average distance to the center of a sphere of radius a.
- (16) 9. Suppose f(a,b,c) is a twice differentiable function of three variables, and g(x,y) is defined by $g(x,y)=f(y^2,xy,-x^2)$. Suppose that $D_1f(1,1,-1)=A$, $D_2f(1,1,-1)=B$, $D_3f(1,1,-1)=C$, $D_1D_1f(1,1,-1)=D$, $D_1D_2f(1,1,-1)=E$, $D_1D_3f(1,1,-1)=F$, $D_2D_2f(1,1,-1)=G$, $D_2D_3f(1,1,-1)=H$, and $D_3D_3f(1,1,-1)=I$ where D_j denotes the partial derivative with respect to the j^{th} variable.

Compute $\frac{\partial^2 g}{\partial x \partial y}(1,1)$ in terms of A, B, C, D, E, F, G, H, and I.

Hint I believe the answer needs exactly five of these.

This problem was taken in part from Calculus A Complete Course by Robert A. Adams.

(16) 10. Compute the double integral of

$$f(x,y) = y^{2} (1 + \sin(x^{3})) + x^{2} + y$$

over the upper half of the interior of the unit circle, where $y \geq 0$.

- (20) 11. Suppose a vector field is defined by $\mathbf{F}(x, y, z) = (3x^2y + yz\cos(xz) + 2)\mathbf{i} + (x^3 + \sin(xz))\mathbf{j} + (xy\cos(xz))\mathbf{k}$.
 - a) Determine whether there is a scalar function P(x, y, z) defined everywhere in space such that $\nabla P = \mathbf{F}$. If there is such a P, find it; if there is not, explain why not.
 - b) Compute the integral $\int_W \mathbf{F} \cdot \mathbf{T} \, ds$, where W is any curve STARTing from $(1, 1, \frac{\pi}{2})$ and ENDing at $(2, 2, \pi)$.

Use information gotten from your answer to a) to help.

Final Exam for Math 291, section 1

May 9, 2003

|--|

Do all problems, in any order.

Show your work. An answer alone may not receive full credit.

You may use a calculator only during the last 20 minutes.

No notes may be used on this exam. A page with formulas will be supplied.

Problem	Possible	Points
Number	Points	Earned:
1	20	
2	18	
3	18	
4	20	
5	20	
6	16	
7	20	
8	16	
9	16	
10	16	
11	20	
Total Points Earned:		

Leave answers in "unsimplified" form: $15^2 + (.07) \cdot (93.7)$ is preferred to 231.559. You should know simple exact values of transcendental functions such as $\cos\left(\frac{\pi}{2}\right)$ and $\exp(0)$. Traditional constants such as π and e should be left "as is" and not approximated.