Formula sheet for the second exam in Math 291, fall ²⁰⁰²

first version 11/25/2002; revised 11/26/2002

Lagrange multipliers for one constraint

If G (the variables) = a constant is the constraint and we want to extremize the objective function, F (the variables), then the extreme values can be found among F 's values of the solutions of the system of equations $\nabla G = \lambda \nabla F$ (a vector abbreviation for the equations $\lambda \frac{\partial}{\partial \mathbf{x}} = \frac{\partial}{\partial \mathbf{x}}$ where \star is each of the variables) and the constraint equation.

z

Polar coordinates

x y r θ x = x since y = x since since y = x since since y = x $r^2 = x^2 + y^2$ $\theta = \arctan\left(\frac{y}{x}\right)$ $\cos\theta$ φ θ ρ *y x* Spherical coordinates $x = -1$. The single singl $\rho^2 = x^2 + y^2 + z^2$ $av = \rho \sin \varphi a \rho a \sigma a \varphi$

Change ofvariables in ² dimensions

$$
\int\int_R f(x,y) dA = \int\int_{\tilde{R}} f(x(u,v), y(u,v)) \left| \frac{\partial(x,y)}{\partial(u,v)} \right| du dv; \frac{\partial(x,y)}{\partial(u,v)} = \det \begin{pmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{pmatrix}
$$
, the Jacobian.

Total mass of a mass distribution $\rho(x, y, z)$ over a region R of \mathbb{R}^3 is $\int\!\int\!\int_R \rho(x, y, z)\,dV$.

Line integrals integrated the company

$$
\int_C f(x, y) ds = \int_a^b f(x(t), y(t)) \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt
$$
\n
$$
\int_C \mathbf{F} \cdot d\mathbf{r} = \int_a^b \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) dt = \int_C \mathbf{F} \cdot \mathbf{T} ds
$$
\n
$$
\int_C P(x, y) dx + Q(x, y) dy = \int_a^b P(x(t), y(t)) x'(t) dt + Q(x(t), y(t)) y'(t) dt
$$

Green's Theorem

end and an and an and an annual service of the service $\int_C P dx + Q dy = \int \int_R \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dA$ will give R will give R 's area $\left\{P = \begin{bmatrix} P \end{bmatrix} \right\}$ and the state of the < : ^P =y and Q=0 $\mathbf{v} = 0$ and $\mathbf{v} = \mathbf{w}$ $P = -\frac{1}{2}y$ and $Q = \frac{1}{2}x$ $2 - 2$

A conservative vector field ${\bf V} = P(x,y){\bf i} + Q(x,y)$ is a gradient vector field: there's $f(x, y)$ with $\sqrt{x} = \sqrt{\sin \frac{x}{\sin x}} = \sqrt{\sin \frac{x}{\sin x}} = \sqrt{\sin x}$. *J* is a potential for $\sqrt{\sin x}$. A conservative vector eld is pather in the path is the such a vector with a vector and the curve a vector of the curve is the Q is For V conservative with potential $f: \int_C P dx + Q dy = f$ (THE END) $- f$ (THE START).

If $P(x, y)$ + $Q(x, y)$ is conservative, then $\frac{\partial}{\partial x} = \frac{\partial}{\partial y}$. If the region is simply connected (means **no holes**) then the converse is true, and f is both $\int P(x, y) dx$ and $\int Q(x, y) dy$.