Formula sheet for the second exam in Math 291, fall 2002

FIRST VERSION 11/25/2002; REVISED 11/26/2002

Lagrange multipliers for one constraint

If G(the variables) = a constant is the constraint and we want to extremize the objective function, F (the variables), then the extreme values can be found among F's values of the solutions of the system of equations $\nabla G = \lambda \nabla F$ (a vector abbreviation for the equations $\lambda \frac{\partial F}{\partial \star} = \frac{\partial G}{\partial \star}$ where \star is each of the variables) and the constraint equation.

Change of variables in 2 dimensions

$$\iint_{R} f(x,y) \, dA = \iint_{\tilde{R}} f(x(u,v), y(u,v)) \left| \frac{\partial(x,y)}{\partial(u,v)} \right| \, du \, dv; \ \frac{\partial(x,y)}{\partial(u,v)} = \det\left(\frac{\partial x}{\partial u} \quad \frac{\partial x}{\partial v} \right), \ \text{the Jacobian.}$$

Total mass of a mass distribution $\rho(x, y, z)$ over a region R of \mathbb{R}^3 is $\iint_R \rho(x, y, z) dV$.

Line integral formulas

$$\int_{C} f(x,y) ds = \int_{a}^{b} f(x(t), y(t)) \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} dt$$
$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{a}^{b} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) dt = \int_{C} \mathbf{F} \cdot \mathbf{T} ds$$
$$\int_{C} P(x,y) dx + Q(x,y) dy = \int_{a}^{b} P(x(t), y(t)) x'(t) dt + Q(x(t), y(t)) y'(t) dt$$

Green's Theorem $\int_{C} P \, dx + Q \, dy = \int \int_{R} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dA \quad \text{These } P, Q \text{ pairs} \begin{cases} P = -y \text{ and } Q = 0 \\ P = 0 \text{ and } Q = x \\ P = -\frac{1}{2}y \text{ and } Q = \frac{1}{2}x \end{cases}$

A conservative vector field $\mathbf{V} = P(x, y)\mathbf{i} + Q(x, y)\mathbf{j}$ is a gradient vector field: there's f(x, y) with $\nabla f = \mathbf{V}$ so $\frac{\partial f}{\partial x} = P$ and $\frac{\partial f}{\partial y} = Q$. f is a **potential** for \mathbf{V} . A conservative vector field is **path independent**. Work done by such a vector field over a **closed curve** is 0. For V conservative with potential $f: \int_C P \, dx + Q \, dy = f(\mathsf{THE END}) - f(\mathsf{THE START}).$

If $P(x, y)\mathbf{i} + Q(x, y)\mathbf{j}$ is conservative, then $\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$. If the region is simply connected (means **no holes**) then the converse is true, and f is both $\int P(x, y) dx$ and $\int Q(x, y) dy$.