640:311:01 Answers to the First Exam 3/7/2003

1

The answers to part 1 were provided in part 2.

(14) 6. Suppose the sequence (x_n) is defined by $x_n :=$ $n-1$ $\frac{x}{5n+7}$. Find x so that (x_n) converges to x . Prove your assertion using the definition of convergence.

Answer I claim that $x =$ 1 5 . Suppose $\varepsilon > 0$ is given. By the Archimedean Property, there is an integer $K \in \mathbb{N}$ so that $K >$ 12 $rac{12}{5\varepsilon}-7$ 5 . Then if $n \geq K$, $n >$ 12 $rac{12}{5\varepsilon}-7$ 5 so that $5n >$ 12 5ε -7 and then $5n + 7 > \frac{12}{5}$ 5ε . Further, we have $5\varepsilon >$ 12 $5n+7$ so that $\varepsilon >$ 12 $\frac{1}{5(5n+7)}$. But $\frac{12}{5.65}$ $\frac{12}{5(5n+7)}$ = $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \begin{array}{c} \end{array} \end{array} \end{array}$ −12 $5(5n + 7)$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ = $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array} \end{array} \end{array}$ $n-1$ $5n + 7$ − 1 5 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array} \end{array} \end{array}$ and we have verified the definition of convergence. (The reader should recognize that preliminary algebra was done "off the page".)

(12) 7. Suppose that the sequence (x_n) converges to x and the sequence (y_n) converges to y. Prove that the sequence (z_n) defined by $z_n := x_n + y_n$ converges to $x + y$.

Answer Suppose $\varepsilon > 0$ is given. The definition of convergence of a sequence implies that there are $J(\varepsilon)$ and $K(\varepsilon)$ in N so that if $n \geq J(\varepsilon)$ then $|x_n - x| < \varepsilon$ and if $n \geq K(\varepsilon)$ then $|y_n - y| < \varepsilon.$ Now consider $W = \max \left(J \left(\frac{\varepsilon}{2} \right) \right)$ 2 $\Big), K\Big(\frac{\varepsilon}{2}\Big)$ $\left(\frac{\varepsilon}{2}\right)$). For $n \geq W$, we know $|x_n - x| < \frac{\varepsilon}{2}$ 2 and $|y_n - y| < \frac{\varepsilon}{2}$ $\frac{z}{2}$. The triangle inequality implies that $|(x_n + y_n) - (x + y)| = |(x_n - x) + (y_n - x)|$ $||y|| \leq |x_n - x| + |y_n - y| < \frac{\varepsilon}{2}$ 2 $+$ ε 2 $=\varepsilon$ and we have verified the definition of convergence.

(14) 8. Suppose S is a nonempty subset of R which is bounded above, and $a \in \mathbb{R}$. Define a subset T of R by $T := \{x : \exists s \in S \text{ so that } x = a + s\}.$ (T is S "translated by a".) Prove that T is bounded above, and prove that $\sup T = a + \sup S$.

Answer Since S is bounded above and nonempty, the Completeness Axiom implies that S has a least upper bound, w. Since w is an upper bound of S, if $s \in S$, $w \geq s$. Then $w + a \geq s + a$ for all $s \in S$, so that if $x \in T$, $w + a \geq x$. Therefore T is bounded above, and $w + a$ is an upper bound of T. Also T is nonempty since S is nonempty. By the Completeness Axiom, T also has a least upper bound, v. Since $w + a$ is an upper bound of T, $w + a \geq v$. Suppose $w + a > v$. Then $w > v - a$. By the criterion for Least Upper Bound, there is $s \in S$ with $w \geq s > v - a$. Then $s + a > v$, and this is a contradiction, since $s + a$ is an element of T and v is supposed to be an upper bound of T. Therefore $\sup T = a + \sup S$.

Comment We could also show that $v \geq w + a$ in the following way: $v - a$ must be an upper bound of S. If not, there is an element s of S with $s > v-a$ which implies $a + s > v$, contradicting v being an upper bound of T. Since $v - a$ is therefore an upper bound of S, $v - a \geq w$ and $v \geq w + a$.

(12) 9. Prove that $2n^2 < 3^n$ for all $n \in \mathbb{N}$.

Comment You may need to verify more than one example numerically.

Answer Let $P(n)$ be the statement $2n^2 < 3^n$ for $n \in \mathbb{N}$. I will prove that $P(n)$ is true for all $n \in \mathbb{N}$ by Mathematical Induction. $\mathcal{P}(1)$ is $2(1^2) < 3^1$ which is true since $2 < 3$.

Now suppose $\mathcal{P}(n)$ is true for some $n \in \mathbb{N}$: $2n^2 < 3^n$. We know $n+1 = \left(\frac{n+1}{n}\right)^n$ \boldsymbol{n} $\bigg)$ n. We can divide by n since n is positive. $n+1$ \overline{n} $= 1 +$ 1 \overline{n} ≤ 2 if $n \geq 1$, and therefore $\left(\frac{n+1}{n}\right)$ \boldsymbol{n} $\big)^2 \leq 4.$ Our simple approach to verify $\mathcal{P}(n+1)$ would be to multiply both sides of $2n^2 < 3^n$ by $\binom{n+1}{n}$ \overline{n} \int_{0}^{2} but since the overestimate we have only provides 4 we wouldn't get 3^{n+1} . Let us verify $P(2)$: $2n^2 = 2(2)^2 = 8$ and $3^2 = 9$, and since $9 > 8$, $P(2)$ is true. Now again suppose $\mathcal{P}(n)$ is true for some $n \in \mathbb{N}$ with $n \geq 2$. Here $\frac{n+1}{n}$ \boldsymbol{n} $= 1 +$ 1 \boldsymbol{n} ≤ 3 2 , so $\left(\frac{n+1}{n}\right)$ n $\Big)^2 < \Big(\frac{3}{2}\Big)^2$ 2 $\Big)^2 =$ 9 4 < 3 . If we multiply $2n^2 < 3^n$ by $\left(\frac{n+1}{n+1}\right)$ \boldsymbol{n} $\Big)^2$ < 3 we get $2(n+1)^2 < 3^{n+1}$, which is the statement $\mathcal{P}(n+1)$. So the inductive step is verified, and the proof is completed.

(14) 10. Suppose that S is a nonempty subset of R with the property that if $a \in S$ then $a^2 \in S$. Prove that if S is bounded above, then sup $S \leq 1$.

Answer Since S is bounded above and nonempty, the Completeness Axiom applies, and Answer Since S is bounded above and nonempty, the Completeness Axiom applies, and $w = \sup S$ exists. If $w > 1$, then $\sqrt{w} > 1$ also, and we know that $w > \sqrt{w}$. The criterion for least upper bound implies that there is $a \in$ $a^2 \in S$, and $a^2 > (\sqrt{w})^2 = w$, which contradicts w being an upper bound of S. Therefore the assumption $w > 1$ is false.

(14) 11. Suppose that (x_n) is a convergent sequence and (y_n) is such that for any $\varepsilon > 0$ there exists $M(\varepsilon) \in \mathbb{N}$ such that $|x_n - y_n| < \varepsilon$ for all $n \geq M(\varepsilon)$. Does it follow that (y_n) is convergent? Prove your assertion.

Answer Yes, (y_n) is convergent, and it converges to the same limit as the sequence (x_n) . Suppose x is the limit of the sequence (x_n) . Then we know from the definition of convergence that if $\varepsilon > 0$, there is $K(\varepsilon) \in \mathbb{N}$ so that for $n \geq K(\varepsilon)$, $|x_n - x| < \varepsilon$. Now consider $W = \max\left(K\left(\frac{\varepsilon}{2}\right)\right)$ 2 $\Big)$, $M\Big(\frac{\varepsilon}{2}\Big)$ $\left(\frac{\varepsilon}{2}\right)$. For $n \geq W$, $|y_n - x| = |(y_n - x_n) + (x_n - x)| \leq |y_n - x|$ $|x_n| + |x_n - x|$ using the triangle inequality. The expression $|y_n - x_n|$ is less than $\frac{\varepsilon}{2}$ by the condition on n and the problem statement. The second expression, $|x_n - x|$, is less than $\frac{\varepsilon}{2}$ again by the condition on *n* involving convergence of the sequence (x_n) . Therefore $|y_n - x| < \varepsilon$ for $n \geq W$, and we have verified that (y_n) converges to x. (This is problem 21 from section 3.2 of the text.)