640:311:01 Answers to the Second Exam 4/18/2003

The answers to part 1 were provided in part 2.

(14) 6. Suppose that $I = [a, b]$ is a closed, bounded interval, and $f: I \to \mathbb{R}$ is a function with $f(x) > 0$ for all $x \in I$. Let $z = \inf\{f(x) : x \in I\}$.

a) If f is continuous on all of [a, b], prove that $z > 0$.

Answer Since f is continuous on [a, b], the Extreme Value Theorem asserts that there is $v \in [a, b]$ so that $f(v) \leq f(x)$ for all $x \in [a, b]$. Therefore $f(v)$ is a lower bound and it is positive. Since $z = f(v)$, z must be positive.

b) Give an example showing that if f is not continuous but still has the property that $f(x) > 0$ for all $x \in I$, z may be 0.

Answer Suppose $[a, b] = [0, 1]$, If $f(x) = \begin{cases} 1 & \text{if } x = 0 \\ 0 & \text{if } x > 0 \end{cases}$ x if $x > 0$ then f is not continuous at 0. Also $z = 0$ since inf $\{(0, 1]\} = 0$. Here $f(x)$ is never 0 for all $x \in [0, 1]$.

- (12) 7. Find a positive number b so that if $|x-1| < b$ then $|x^3-1| < \frac{1}{100}$. Prove your assertion. Answer Algebra tells us that $x^3 - 1 = (x - 1)(x^2 + x + 1)$. If $|x - 1| < 1$, then $0 < x < 2$ so that $1 < x^2 + x + 1 < 7$. We can take $b = \frac{1}{700}$. Since this b is less than 1, we know $|x^2+x+1| < 7$. Then we see that $|x^3-1| = |x-1| \cdot |x^2+x+1| < \frac{1}{700} \cdot 7 = \frac{1}{100}$. Certainly there are other valid answers.
- (12) 8. Suppose the set A is all negative rational numbers and the number 1. That is, $A = \{x \in$ $\mathbb{R}: x$ is rational and $x < 0$ ∪ {1}. Find all the cluster points of A. Explain briefly why each point so identified is a cluster point, and explain briefly why each point excluded is not a cluster point.

Answer Let C be the set of cluster points of A. Then $C = (-\infty, 0]$. If $x \leq 0$ and $\delta > 0$, the interval $(x-\delta, x)$ is open and non-empty, and therefore by the density of \mathbb{O} there must be a rational number $r \in (x - \delta, x)$. Since $x \leq 0$, r must be negative and therefore in A. So every element of C is a cluster point of A . We must show that positive numbers are not cluster points of A. 1 is not a cluster point, since there are no elements of A in the set described by the inequalities $0 < |x - 1| < 1$ corresponding to $\delta = 1$. If $w > 0$ and $w \neq 1$, then take $\delta = \min(|w-1|, w)$. Both of those numbers are positive so δ is positive. The set of x's satisfying $0 < |x - w| < \delta$ contains only positive numbers (because of the w in the specification of δ) and does not contain 1 (because of the $|w-1|$ in the specification of δ). Therefore no element of A is in that set, so w cannot be a cluster point of A.

(12) 9. If \sum^{∞} $j=1$ $|a_j|$ converges, prove that $\sum_{n=1}^{\infty}$ $j=1$ a_j converges.

Hint The Cauchy criterion and the \leq and the Cauchy criterion.

Answer Let $x_n = \sum_{n=1}^{n}$ $j=1$ $|a_j|$ and let $y_n = \sum_{n=1}^n$ $j=1$ a_j . Since (x_n) converges, it satisfies the Cauchy criterion: given $\varepsilon > 0$, there is $K(\varepsilon) \in \mathbb{N}$ so that for $m > n \ge K(\varepsilon)$, $|x_m - x_n| < \varepsilon$. But $|y_m - y_n| =$ $\sum_{ }^{m}$ $j=n+1$ a_j $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array} \end{array} \end{array}$ $\stackrel{\triangle}{\leq} \quad \sum^m$ $j = n+1$ $|a_j| = |x_m - x_n|$ so that the sequence (y_n) also satisfies the Cauchy criterion with the same $K(\varepsilon)$. So (y_n) must converge. Thus the infinite series \sum^{∞} $j=1$ a_j converges.

(14) 10. Suppose that a sequence is defined recursively by $\begin{cases} x_1 = 1 \\ x_2 = 1 \end{cases}$ $x_{n+1} =$ $\overline{2x_n+3}$ for $n \in \mathbb{N}$.

Here are approximate values with error $< .00001$ of the next ten elements of the sequence: 2.23606, 2.73352, 2.90981, 2.96978, 2.98991, 2.99663, 2.99887, 2.99962, 2.99987, 2.99995 .

a) Prove that (x_n) is an increasing sequence.

Answer We know from what's shown that $x_1 < x_2$. Let \mathcal{P}_n be the inequality $x_n < x_{n+1}$. If we verify that knowing P_n is true implies that P_{n+1} is true, we will have proved that the sequence is increasing by mathematical induction. Since $x_n < x_{n+1}$, we know that $2x_n < 2x_{n+1}$ because $2 > 0$. And then $2x_n + 3 < 2x_{n+1} + 3$ by adding 3. And square roots $2x_n < 2x_{n+1}$ because $2 > 0$. And then $2x_n + 3 < 2x_{n+1} + 3$ by adding 3. And square roots preserve inequalities of numbers (all of these numbers are positive), so that $\sqrt{2x_n + 3} <$ $\sqrt{2x_{n+1}+3}$. This is exactly \mathcal{P}_{n+1} , and we are done.

b) Prove that (x_n) is bounded above.

Answer I claim that $x_n \leq 3$ for all $n \in \mathbb{N}$. Let \mathcal{Q}_n be the inequality $x_n \leq 3$. \mathcal{Q}_1 is true: $x_1 = 1 < 3$. Assuming \mathcal{Q}_n : if $x_n \leq 3$, then $2x_n \leq 6$ and $2x_n + 3 \leq 9$. Taking square roots, $x_1 = 1 < 3$. Assuming \mathcal{Q}_n : if $x_n \leq 3$, then $2x_n \leq 6$ and we get $\sqrt{2x_n + 3} \leq 3$ which is \mathcal{Q}_{n+1} , and we are done.

c) Conclude that (x_n) converges, and find its limit, with brief explanation of your work.

Answer (x_n) is a bounded, increasing sequence and therefore converges. If L is the limit of this sequence, then L^2 is the limit of $((x_n)^2)$. But this sequence is $(2x_n + 3)$ which, using our theorems on limits and arithmetic, must converge to $2L + 3$. So $L^2 = 2L + 3$ and $L^2 - 2L - 3 = 0$ so that $(L-3)(L+1) = 0$. L must be either -1 or 3. The limit of a non-negative sequence must be non-negative, and therefore $L = 3$.

(16) 11. a) Prove that $F(x) = \frac{1}{x}$ is uniformly continuous on the domain $[1, \infty)$.

Answer Of course we link $|F(x) - F(c)|$ and $|x - c|$: $|F(x) - F(c)| = \left|\frac{1}{x}\right|$ $\frac{1}{x} - \frac{1}{c}$ $\frac{1}{c}$ = $\frac{|x-c|}{|xc|}$ $\frac{x-c}{|xc|}$. In this problem both x and c are positive, so $|xc| = xc$. And in part a), $x \ge 1$ and $c \ge 1$ so that $\frac{|x-c|}{x} \le |x-c|$. Given $\varepsilon > 0$, take $\delta = \varepsilon$. If $|x-c| < \delta$, $|\frac{1}{x}|$ $\frac{1}{x} - \frac{1}{c}$ $\left|\frac{1}{c}\right| \leq |x-c| < \delta$, and $|F(x) - F(c)| < \varepsilon$. Therefore F is uniformly continuous on $[1, \infty)$.

b) Prove that $F(x) = \frac{1}{x}$ is not uniformly continuous on the domain $(0, 1]$.

Answer Use the algebra above. Let's look at $x_n = \frac{1}{n}$ $\frac{1}{n}$. Then $|x_n - x_{n+1}| = \frac{1}{n(n+1)}$ and this surely converges with limit 0. But $|f(x_n) - f(x_{n+1})| = 1$. Therefore we have created an ε (the number 1) for which no δ can be found: the statement "If $|x-c| < \delta$ with x and c both in (0,1], then $|F(x) - F(c)| < 1$ " is false for any positive δ (take n so that $\frac{1}{n(n+1)} \leq \frac{1}{n}$ $\frac{1}{n} < \delta$, possible by the Archimedean Property, and take $x = x_n$ and $c = x_{n+1}$. Of course there are other valid answers to this question.