- (14) 2. Suppose that f and g are bounded functions defined on the closed and bounded interval [a,b] with a < b. Define $A = \sup\{f(x) + g(x) : x \in [a,b]\}$, $B = \sup\{f(x) : x \in [a,b]\}$, and $C = \sup\{g(x) : x \in [a,b]\}$. Prove that $A \leq B + C$. Give an example to show that A may be less than B + C.
- (16) 3. a) If x is a real number, prove that x is the limit of some sequence (x_n) where each x_n is a rational number.
 - b) If |x-3| < 2 find and verify some upper bound on $2x^3 + \frac{7x}{3x^2 + 4}$.
- (12) 4. Let (x_n) be an infinite sequence. Assume $\lim(x_n) = L$. Let M be an element of \mathbb{N} and suppose that the set S is defined by $S = \{x_n : n \ge M\}$. Prove that $\inf S \le L$.
- (18) 5. Assume the following for all parts of this problem:

The function f is continuous on the closed and bounded interval [a, b] with a < b, and f is always non-negative: $f(x) \ge 0$ for all $x \in [a, b]$.

a) Prove that $\int_a^b f$ is always non-negative.

Hint Take a *very* simple partition, and use a major result about continuous functions which you should cite carefully.

- b) Suppose there is $c \in [a, b]$ with f(c) > 0. Prove that there is an interval of positive length where $f(x) > \frac{1}{2}f(c)$ for all x in the interval.
- c) Suppose there is $c \in [a, b]$ with f(c) > 0. Prove that $\int_a^b f > 0$.

Hint Use your answer to b) and take an almost very simple partition.

- (16) 6. Suppose that $g: \mathbb{R} \to \mathbb{R}$ is a continuous function, and that |g(x)| < 10 for all $x \in \mathbb{R}$. Let $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = x^3 + g(x)$. Prove that f has at least one real root. Cite any results you use carefully. Be sure that the function(s) involved satisfy all the hypotheses.
- (20) 7. Give examples. You need not verify that your examples have the properties requested.
 - a) $f: \mathbb{R} \to \mathbb{R}$ which is continuous everywhere *except* at 0 and 1.
 - b) $f: \mathbb{R} \to \mathbb{R}$ which is continuous only at 0 and 1.
 - c) A non-empty bounded subset of \mathbb{R} which contains its sup and does not contain its inf.
 - d) $f: \mathbb{R} \to \mathbb{R}$ which is bounded and which is Riemann integrable in [a, b] for any $0 \le a < b$ and which is *not* Riemann integrable in [c, d] for any $c < d \le 0$.
 - e) An unbounded sequence which has subsequences converging to -1 and 1.
- (16) 8. Suppose that $f(x) = x^2$ and $c \in \mathbb{R}$. Prove using the definition of continuity that f is continuous at c.

- (16) 9. Suppose that (a_n) is a sequence of real numbers and that for each $n \in \mathbb{N}$, the following inequality is true: $|a_n 4| < \frac{1}{n}$. Find a specific positive integer N so that for all $n \geq N$, $\left|\frac{1}{a_n} \frac{1}{4}\right| < \frac{1}{100}$. Be sure to verify your claimed inequalities.
- (18) 10. Suppose that p is a positive real number and that a sequence is defined recursively by $\begin{cases} x_1 = \sqrt{p} \\ x_{n+1} = \sqrt{p+x_n} & \text{for } n \in \mathbb{N} \end{cases}$
 - a) Prove that (x_n) is an increasing sequence.
 - b) Prove that (x_n) is bounded above by $1 + \sqrt{p}$.
 - c) Conclude that (x_n) converges, and find its limit, with brief explanation of your work.
- (14) 11. Suppose f is a Riemann integrable function on [0,1]. If $j \in \mathbb{N}$, let $a_j = \int_{\frac{1}{j+1}}^{\frac{1}{j}} f$. Prove that the infinite series $\sum_{j=1}^{\infty} a_j$ converges, and that its sum is $\int_0^1 f$.

Hint A Riemann integrable function must be bounded.

Answers to Part 1 of all three exams

The definition of supremum Suppose S is a nonempty subset of \mathbb{R} . x is a supremum of S if x is an upper bound of S (for all $s \in S$, $s \le x$) and if y is any upper bound of S, then $x \le y$.

A criterion for an upper bound to be a supremum Suppose x is an upper bound of a nonempty subset of \mathbb{R} . x is a supremum of S if and only if for all $\varepsilon > 0$, there is $s \in S$ with $x - \varepsilon < s \le x$.

The Completeness Axiom If S is a nonempty subset of R which is bounded above, then S has a least upper bound.

The Archimedean Property If $x \in \mathbb{R}$ then there is $n \in \mathbb{N}$ so that n > x.

The definition of convergence of a sequence A sequence (x_n) converges to $x \in \mathbb{R}$ if for every $\varepsilon > 0$ there is $K(\varepsilon) \in \mathbb{N}$ such that for $n \in \mathbb{N}$ with $n \geq K(\varepsilon)$, $|x_n - x| < \varepsilon$.

The definition of continuity Suppose $f: \mathbb{R} \to \mathbb{R}$ and $c \in \mathbb{R}$. Then f is continuous at c if, given $\varepsilon > 0$ there exists $\delta > 0$ such that if $|x - c| < \delta$, then $|f(x) - f(c)| < \varepsilon$.

A sequential criterion which is equivalent to continuity Suppose $f: \mathbb{R} \to \mathbb{R}$ and $c \in \mathbb{R}$. Then f is continuous at c if and only if for all sequences (x_n) converging to c, the sequence $(f(x_n))$ converges and its limit is f(c).

The definition of cluster point If A is a subset of \mathbb{R} , then $c \in \mathbb{R}$ is a cluster point of A if for all $\delta > 0$ there is an element x of A not equal to c for which $|x - c| < \delta$.

The definition of Cauchy sequence A sequence (x_n) of real numbers is a Cauchy sequence if for all $\varepsilon > 0$ there is an element $K(\varepsilon) \in \mathbb{N}$ so that for n and m in \mathbb{N} with $n \geq K(\varepsilon)$ and $m \geq K(\varepsilon)$, $|x_n - x_m| < \varepsilon$.

The definition of convergence of a series and its sum Suppose $\sum_{j=1}^{\infty} a_j$ is an infinite

series. Define the sequence of partial sums to be $x_n = \sum_{j=1}^n a_j$. Then the infinite series converges and its sum is L if the series (x_n) converges and its limit is L.

The definition of $US(f,\mathcal{P})$, the upper sum for f associated with the partition \mathcal{P} on [a,b] If $\mathcal{P} = \{a = x_0 < x_1 < \ldots < x_{n-1} < x_n = b\}$ is a partition of the closed and bounded interval [a,b], and f is a bounded function defined on [a,b], then $US(f,\mathcal{P}) = \sum_{j=1}^{n} \sup\{f(x) : x \in [x_{j-1},x_j]\}(x_j-x_{j-1})$.

A criterion directly involving upper and lower sums which is equivalent to Riemann integrability Suppose f is a bounded function defined on the closed and bounded interval [a, b]. f is Riemann integrable on [a, b] if and only if for all $\varepsilon > 0$ there is a partition \mathcal{P} so that $US(f, \mathcal{P}) - LS(f, \mathcal{P}) < \varepsilon$.

A version of the Fundamental Theorem of Calculus Suppose f is Riemann integrable on [a, b]. Then f is Riemann integrable on [a, x] for all $x \in [a, b]$. Define $F(x) = \int_a^x f$ for $x \in [a, b]$. If f is continuous at $c \in [a, b]$ then F is differentiable at c and F'(c) = f(c).

Part 2 of the Final Exam for Math 311, section 1

May 13, 2003

NAME	

Do all problems, in any order.

No notes or texts may be used on this exam.

The last page contains the answers to Part 1.

D 1.1	D :1.1	D: /
Problem	Possible	Points
Number	Points	Earned:
1	40	
2	14	
3	16	
4	12	
5	18	
6	16	
7	20	
8	16	
9	16	
10	18	
11	14	
Total Poir		