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640:403:05 Answers to the Second Exam 4/17/2001

(12) 1. Let C be any simple closed curve described in the positive sense in the z plane, and write g(w) =
∫

C
z3

−5z
z−w

dz .

a) Show that g(w) = 2πi(w3 − 5w) if w is inside C.

Answer z3 − 5z is analytic everywhere (it is a polynomial!). The CIF implies that if w is inside a simple
closed curve, C, then 1

2πi
g(w) = w3 − 5w so the result requested is true.

b) Show that g(w) = 0 when w is outside C.

Answer If w is outside C, then the integrand (the function being integrated!) is analytic on and inside the
simple closed curve, C. Therefore by Cauchy’s Theorem, g(w) = 0.

(12) 2. Compute
∫

B
z4

(z−(1+i))3
dz where B is the simple closed curve shown: the line segment from 0 to 3, followed

by the quarter-circular arc centered at 0 from 3 to 3i, followed by the line segment from 3i to 0.

Answer −24π

Answer The CIF for derivatives states that f (n)(z0) = n!
2πi

∫

C

f(z)
(z−z0)n+1 dz if f is ana-

lytic on and inside a simple closed curve C and z0 is inside C. Here f(z) = z4, n = 2,
z0 = 1 + i, and C is the curve B. Then f (2)(1 + i) = 4 · 3(1 + i)2 = 24i. The answer we
want is 24i divided by 2! = 2 and multiplied by 2πi, so the answer is −24π. The an-
swer can also be obtained using the Residue Theorem, or by computing the appropriate
Laurent series and integrating directly.

2

3

i

i

i

0 1 2 3

(12) 3. Suppose f is the function defined by f(z) = z+1
z(z−1) .

Find the Laurent series representing f(z) in the annulus 0 < |z| < 1. Be sure to explain why the series you
write is valid in that annulus. Find explicit values of the coefficients of z10 and z−10 in the series.

(Partial) Answer The coefficients are −2 and 0.

Answer If z+1
z(z−1) = A

z
+ B

z−1 then z + 1 = A(z − 1) + Bz. z = 0 shows that A = −1 and z = 1 shows that

B = 2. Then f(z) = −1
z

+ 2
z−1 . When |z| < 1, the geometric series with ratio z gives 2

z−1 = −2
∑

∞

n=0 zn =
∑

∞

n=0 −2zn. Since we’re dividing by z, we also need to know 0 < |z|. So the Laurent series for f in the
annulus 0 < |z| < 1 is − 1

z
+

∑

∞

n=0 −2zn. The coefficient of z10 is −2. The coefficient of z−10 is 0.

Another method to get the Answer z+1
z(z−1) = − z+1

z
· 1
1−z

= − z+1
z

·∑∞

n=0 zn. There is some “overlapping” of

powers because of the multiplication by z + 1. This answer can be rewritten to be identical to the previous
result.

(14) 4. a) Suppose that f is an entire function and there is a positive constant K so that |f(z)| > K for all z.
Prove that f must be a constant function.

Hint what can you do with something that is not 0?

Answer f can never be 0 since |f(z)| is always positive. Therefore the function g defined by g(z) = 1
f(z) is

defined for all z and is analytic: g is entire. Also, |g(z)| < 1
K

for all z, so g is bounded and entire. Liouville’s
Theorem applies to show that g is constant and therefore so is f .

b) The exponential function is never 0 and is an entire function. Briefly explain why the exponential function
does not contradict the assertion in part a).

Answer Every non-zero complex (and therefore real) number is a value of the exponential function (which
is why log has values at every non-zero complex number). If K > 0, we can find z0 with ez0 = K

2 so any
inequality of the form |ez| > K must be false for some z’s.

(14) 5. If F (z) = 1
z(z2

−1)(z2+6) compute the integral of F over the circle of radius 2 centered at 0, oriented

counterclockwise as usual. Note that
√

6 > 2.

Answer −πi
21

Answer F has isolated singularities at 0, ±1, and ±
√

6i. The Residue Theorem could be applied but
the solution here will use techniques from earlier in the course. In the picture below, the singularities are

OVER
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indicated by . Here is one approach to getting the answer. The important corollary to Cauchy’s Theorem
says that simple closed curves can be deformed without changing the value of the integral if the integrand
is analytic in the region of the deformation. Deform the original circle into “lumps” around the singularities

210

at 0 and ±1. Then “pinch off” the
contour into three pieces, one around
each of 0 and ±1. I’ve drawn three cir-
cles for simplicity, but the important
property is that each piece is a simple
closed curve with exactly one singular-
ity of f inside. We’ll use the CIF on
each circle. The left-hand circle has as

integrand g1(z)
z+1 where g1(z) = 1

z(z−1)(z2+6) is analytic on and inside this circle. So the CIF implies that

the integral is 2πi · g1(−1) = 2πi ·
(

1
(−1)(−2)((−1)2+6)

)

= 2πi · 1
14 = πi

7 . The CIF on the middle circle

shows that the integral is 2πi · g2(0) where g2(z) = 1
(z2

−1)(z2+6) (analytic on and inside this circle) and the

integrand is seen as g2(z)
z

. Since g2(0) = − 1
6 the middle circle’s integral is −πi

3 . Finally, the integrand in the

right-hand circle is g3(z)
z−1 where g3(z) = 1

z(z+1)(z2+6) . Again the CIF shows that the value of the integral is

2πi · g3(0) = 2πi ·
(

1
14

)

= πi
7 . The original integral is the sum of πi

7 − πi
3 + πi

7 = −πi
21 .

Comment (about my answer) Clever students tried other ways to do this problem, sometimes successfully.
Some students “decomposed” F into five pieces with partial fractions, and then integrated each piece. Other
students tried to find the Laurent expansion for F valid in the annulus containing the circle of radius 2. Only
the coefficient of the 1

z
term would matter, of course! This gives the correct answer also but is intricate.

(12) 6. Suppose the following is known about the coefficients of a power series
∑

∞

n=0 anzn: All an’s are complex
numbers with |an| ≤ 12. Explain why the power series converges for all z with |z| ≤ 1

10 . Also verify that for
those z’s the sum of the series is always within a closed disc of radius 17 centered at 0.

Comment 17 is an overestimate!

Answer An absolutely convergent series must converge. The triangle inequality (extended to infinite sums)
implies that the sum with | |’s is an overestimate of the true sum. That is, |

∑

∞

n=0 anzn| ≤
∑

∞

n=0 |an||z|n.

The conditions here imply the last sum is ≤ ∑

∞

n=0 12
(

1
10

)n
= 12

(

1
1− 1

10

)

= 120
9 , certainly less than 17 = 153

9 .

(12) 7. The function g(z) = (1 + 3z)e(z2) is analytic near 0.

a) Use results about power series of familiar functions to find terms up to and including degree 4 in the
Taylor series of g centered at 0.

Answer e(z2) = 1 + z2 + 1
2z4+higher order terms, using the power series for exp centered at 0 which

converges for all z. Multiply by 1 + 3z and discard all terms with degree > 4: (1 + 3z)(1 + z2 + 1
2z4) =

1 + z2 + 1
2z4 + 3z + 3z3 + 3

2z5 “=”1 + 3z + z2 + 3z3 + 1
2z4.

b) Use your answer to a) to compute g(4)(0).

Answer 12

Answer g(4)(0) is the coefficient of z4 multiplied by 4!, so it is 1
2 · 4! = 1

2 · 24 = 12.

(12) 8. a) Use results about power series of familiar functions to find an exact value of L: lim
z→0

(cos z)−1+ z
2

2!

z4 = L.

Answer The Taylor series at 0 for cosine is
∑

∞

n=0(−1)n z2n

(2n)! , converging for all z. 1− z2

2! begins this series.

Therefore the denominator in the problem statement has a common factor of z4, and the result for z 6= 0 is:
(cos z)−1+ z

2

2!

z4 =
∑

∞

n=2(−1)n z2n−4

(2n)! . When z = 0 all terms but the first “drop out”, so L = 1
4! = 1

24 .

b) Suppose the function h is defined by h(z) =

{

(cos z)−1+ z
2

2!

z4 if z 6= 0
L if z = 0

where L is the number found in a).

Explain carefully why h is entire (analytic in all of the complex numbers).

Answer The function h has convergent power series
∑

∞

n=2(−1)n z2n−4

(2n)! , valid for all z. Such series converge

to analytic functions.


