640:403:01 Answers to the Second Exam 4/28/2001

R

(16) 1. Use the Residue Theorem to compute $\int_{-\infty}^{\infty} \frac{dx}{(1+x^2)^2}$. $\frac{1}{(1+x^2)^2}$. $\overline{S^2}$. $\overline{S^2}$

(10) \leq 2. Find $R > 0$ so that all roots of the polynomial $P(z) = z_{0} + 12z_{0} - (1 + i)z_{0} + 9z_{0} - 3$ are inside the circle $|z|=R$.

Answer Take $R = 100$, $f(z) = z^2$, and $g(z) = 12z^2 - (1 + i)z^2 + 9z - 3$. For $|z| = 100$, $|f(z)| = 10^{10}$ while $|g(z)| \leq 12|z|^4 + \sqrt{2}|z|^2 + 9|z| + 3 \leq 10^8(12 + \sqrt{2} + 9 + 3) \leq 10^{10}$. We use Rouché's Theorem: $f(z)$ and $f(z) + g(z) = P(z)$ must have the same number of zeros inside the circle $|z| = 100$. But $f(z)$ has a zero of multiplicity 5 at 0. So $P(z)$ must have five zeros inside $|z|=100$ and $P(z)$, a polynomial of degree 5, can have at most five zeros.

- (16) 3. Use the Residue Theorem to compute $\int_{0}^{2\pi} \frac{d\theta}{5+2\pi}$ <u>na matang pangangan na manang pangangang na manang pangangang na manang pangang na manang pangang na manang na</u> 5+3 cos Answer Since $\cos \theta = \frac{e^{i\theta}+e^{-i\theta}}{2}$, $\int_{0}^{2\pi}$ $\frac{e^{-e^{-i\theta}}}{2}$, $\int_0^{2\pi} \frac{d\theta}{5+3\cos\theta}$ <u>na matang pangangan na manang pangangang na manang pangangang na manang pangang na manang pangang na manang na</u> $\overline{5+3\cos\theta} = J_0$ $\overline{10e^{i\theta}+3\theta}$ ^R 2 $2e$ is a set of \sim $\frac{10e^{i\theta}+3(e^{i\theta})^2+3}{10e^{i\theta}+3(e^{i\theta})^2+3}$ and $z=e^{i\theta}$ so $az=$ ie^+ $a\sigma$, the definite integral is recognized as a parameterization of a line integral around the unit circle, $|z| = 1: \frac{1}{i} \int_{|z|=1} \frac{2}{3z^2 + 10}$ $\frac{2}{3z^2+10z+3}$ dz. $3z^2+10z+3=0$ when $z=\frac{-10\pm\sqrt{100-36}}{6}=$ 108 6 . The integrand has isolated singularities which are both poles of order 1 at 3 \pm and at $-\frac{1}{3}$. To use the Residue Theorem, we need the residue inside $|z| = 1$. Since $\overline{3z^2+10z+3} = \overline{3(z+\frac{1}{3})(z+3)}$ the residue of the integrand at $-\frac{1}{3}$ is $\overline{3(z+3)}$ at $z = -\frac{1}{3}$, which is $\frac{1}{4}$. Then the Residue Theorem gives the value of the desired integral: $2\pi i \cdot \frac{1}{i} \cdot \frac{1}{4} = \frac{1}{2}$.
- (14) 4. Suppose $Q(z) = \frac{(e-1)^2}{z^4}$. Iden z^4 is the two-dimensional precisely as possible the intervals of the isolated singular singular z^4 larity at 0 of $Q(z)$: is it removable, a pole, or essential? If it is a pole, find the order of the pole. Find the first two non-zero terms of the Laurent series of $Q(z)$ at 0. Find the residue of $Q(z)$ at 0.

Answer We know $e^z = 1 + z + \frac{z^2}{2} + higher$ order terms so that $\frac{(e^z-1)^2}{z^4} = \frac{z^2}{2}$ $z^{\texttt{+}}$ $z^{\texttt{+}}$ $(z+\frac{z^2}{2}+h.o.t.)^2$ z^4 $\frac{z+z+h.o.t.}{z^4}=\frac{1}{z^2}+\frac{1}{z}+h.o.t.$ and we can read off the answers: $Q(z)$ has a pole of order 2 at 0, its Laurent series begins $\frac{1}{z^2} + \frac{1}{z}$, and its residue at 0 is 1.

(12) \rightarrow 5. Suppose $f(z)$ is an entire function (analytic in the whole plane) and that $|f(z)| \leq |e|$ for all complex numbers z. Show that there must be a complex number C with $|C| \leq 1$ so that $f(z) = Ce^z$ for all z.

Answer Since e^x is never 0, $F(z) = \frac{z-iz}{e^z}$ is an entire function. The hypotheses say that $|F(z)| \leq 1$ for all z. Liouville's Theorem implies that $F(z)$ is constant, and it must be a constant C with $|C| \leq 1$. So $\frac{f(z)}{e^z} = C$ for all z, and $f(z) = Ce^z$ for all z, as desired.

 (14) 6. a) Compute $\int_{|z|=1} \frac{e^z}{z} dz$ $\frac{e^2}{z}$ dz using any applicable theorem.

> Answer We could use the Residue Theorem again, but the Cauchy Integral Formula for $z = 0$ also applies. The result is $2\pi i$ multiplied by the value of e^+ at $z = 0$. This value is just 1, so the integral's value is $2\pi i$.

b) Use the answer given for part a) to find the exact values of $\int_0^{2\pi} e^{\cos \theta} \cos(\sin \theta) d\theta$ and of $\int_0^{2\pi} e^{\cos \theta} \sin(\sin \theta) d\theta$.

Answer If $z = e^{i\theta}$, $e^z = e^{(e^{i\theta})} = e^{\cos\theta + i\sin\theta} = e^{\cos\theta}e^{i\sin\theta} = e^{\cos\theta}(\cos(\sin\theta) + i\sin(\sin\theta)).$ Also $dz = ie^{i\theta} d\theta$ so that $\frac{dz}{z} = \frac{ie^{i\theta} d\theta}{e^{i\theta}} = i d\theta$. Therefore $\int_{|z|=1} \frac{e^z}{z} dz$ $\frac{e^z}{z}dz=\int_0^{2\pi}e^{\cos\theta}\bigl(\cos\theta\bigr)$ $\frac{\cos \theta}{\cos (\sin \theta)}+$ $i\sin(\sin\theta)$ i d θ . Part a) tells us this is $2\pi i$. We see that $\int_0^{2\pi} e^{\cos\theta} \cos(\sin\theta) d\theta = 2\pi$ and $\int_0^{2\pi} e^{\cos \theta} \sin(\sin \theta) d\theta = 0$ by separating the real and imaginary parts. This is consistent with Maple's approximations.

Comment The versions of Maple I have at home can't compute this integral symbolically, but the latest version at Rutgers can.

- (12) 7. The following information is known about a function, $F(z)$:
	- i) $F(z)$ is defined and analytic for all $z \neq 0$.
	- ii) $F(i) = 3$.
	- iii) For all positive integers, $n, r \left(\frac{\pi}{n} \right) = 0.$
	- a) What kind of isolated singularity must $F(z)$ have at 0? Explain your answer.

Answer If 0 were a pole then $|F(\frac{\pi}{n})| \to \infty$ as $n \to \infty$ and this is false by III). If 0 were a removable singularity, then $F(0) = \lim_{n \to \infty} F(\overline{n}) = 0$. If this is true, $F(z)$ with the value 0 at $z = 0$ would be entire. Then $F(z)$ would be 0 on a sequence with a limit point. Such a function would need to be 0 *everywhere* by the Identity Theorem (``Two functions) analytic in a connected open set which agree on a set with a limit point must actually agree everywhere in the set."), but this would contradict ii), that $F(i) = 3$. The only alternative is that $F(z)$ has an essential singularity at $z = 0$.

b) What is the radius of convergence of the Taylor series expansion centered at $z = i$ of the function $F(z)$? Explain your answer.

Answer The radius of convergence is at least 1, because $F(z)$ is certainly analytic in a disc of radius 1 centered at i. If the radius of convergence were larger than 1, the sum would represent an analytic function agreeing with $F(z)$ in an open disc, and therefore agreeing with $F(z)$ for all $z \neq 0$ in the disc (using the Identity Theorem again). Then F (z) would have a removable singularity at 0 because the Taylor series would behave like an analytic function near 0. Since $F(z)$ has an essential singularity at 0, this is impossible. So the radius of convergence must be exactly 1.