403:01 How to "locate" some complex numbers 1/29/2002 I asked the following: Suppose z is the complex number pictured. <u>Draw and label</u> the following complex numbers as well as you can: $$\mathbf{A} = \frac{1}{2}z$$ $\mathbf{B} = -z$ $\mathbf{C} = iz$ $\mathbf{D} = \overline{z}$ $\mathbf{E} = \frac{1}{z}$ Here are the "answers". A is a positive real multiple of z, so it has the same direction. Its length is half the length of $\bf A$. $\bf B$ is -z, the additive vector inverse of z. It points "backwards" compared to z, with the same magnitude. $\bf C$ is the first complex number needing thought. What is the effect of multiplication? Arguments are added, and the lengths of complex numbers are multiplied. i is a complex number of modulus 1, so the modulus of iz is the same as the modulus of z. Since i has argument $\frac{\pi}{2}$ (a right angle!), iz is z rotated in the positive, counterclockwise direction by a right angle. In the context of complex variables, you can reconsider $\bf B$: $-z=i\cdot i\cdot z$, so -z is just z rotated by a right angle and again rotated by a right angle. The answer's the same, but thinking again is good. $\bf D$ is the "vector" z reflected across the x-axis, the real axis. Complex conjugation reflects across the real axis. (Question What's a formula, in complex variables notation, for the result of reflecting z across the y-axis?) To get $\bf E$, use the formula $\frac{1}{z} = \frac{\overline{z}}{|z|^2}$. We've already "got" \overline{z} (that's $\bf D$). We must multiply \mathbf{D} by $\frac{1}{|z|^2}$, a positive real number, so \mathbf{E} has the same direction as \mathbf{D} . We can debate exactly where to draw \mathbf{E} along the line segment representing \overline{z} . I estimate the length of z is more than 1 and less than 1.5. So my guess for \mathbf{E} is about where it is drawn. Certainly \mathbf{E} 's precise position isn't clear, but it should be along the line segment representing \mathbf{D} , well inside the unit circle, but not really close to 0. \mathbf{F} 's argument is twice z's, and its modulus is the square of z's. I think the modulus of \mathbf{F} is between 2 and 2.25 which is what I've tried to draw.