Math 504: Complex Variables (Spring, 2000)

Let **L** denote the subset of \mathbb{R}^2 defined by $\{x = 0 \& y \ge 0\} \cup \{x \ge 0 \& y = 0\}$ (the union of the non-negative x- and y-axes).

A1 Prove that \mathbf{L} is the image of a bijective C^{∞} map of \mathbb{R} to \mathbb{R}^2 . That is, there are two C^{∞} functions a(t) and b(t) defined on all of \mathbb{R} so that the mapping $t \to (a(t), b(t))$ is 1-to-1 and onto \mathbf{L} . Also, prove that \mathbf{L} is <u>not</u> the image of a regular C^{∞} map. Here "regular" means that for all $t \in \mathbb{R}$, either a'(t) or b'(t) is non-zero. You likely will need to use the Implicit/Inverse Function Theorem.

A2 Prove that **L** is <u>not</u> the image of a real analytic map. That is, there does <u>not</u> exist a pair of real analytic functions a(t) and b(t) so that the image of \mathbb{R} in \mathbb{R}^2 via the mapping $t \to (a(t), b(t))$ is **L**.* Note that although the real and imaginary parts of a holomorphic function are always real analytic, it is false that any pair of real analytic functions can be assembled to create a holomorphic function. Example: x - iy.

A3 Prove that $\mathcal{A}(\mathbb{R})$, the set of real analytic functions defined on all of \mathbb{R} , is a ring using the usual pointwise addition and multiplication of functions as ring operations.*

A4 Prove that any positive element of $\mathcal{A}(\mathbb{R})$ has a cube root in $\mathcal{A}(\mathbb{R})$. Is this statement still true if the word "positive" is replaced by non-negative or just deleted? If you decide the statement would then be false, verify your assertion with example(s). Is there any additional hypothesis which would give the desired conclusion?*

A5 If U is open in \mathbb{C} , let $\mathcal{O}(U)$ be the collection of holomorphic (complex analytic) functions in U. Given $f \in \mathcal{A}(\mathbb{R})$, prove that there is a connected open set $U \subset \mathbb{C}$ with $\mathbb{R} \subset U$ and an $F \in \mathcal{O}(U)$ so that $F|_{\mathbb{R}} = f$. Can the same U be used for all f's?

A6 Prove that the U in the previous problem can generally not be chosen to be a <u>uniform</u> neighborhood of \mathbb{R} . That is, given $\epsilon > 0$, define V_{ϵ} to be those complex numbers z with $|\operatorname{Im} z| < \epsilon$. Verify by giving an example as explicitly as possible that there exists $f \in \mathcal{A}(\mathbb{R})$ such that for all $\epsilon > 0$, $f \neq F_{\epsilon}|_{\mathbb{R}}$ for any $F_{\epsilon} \in \mathcal{O}(V_{\epsilon})$.

A7 This problem is exactly quoted from the text Analytic Functions, written by Stanislaw Saks and Antoni Zygmund and published in 1938. M(r; F) is $\max_{|z|=r} |F(z)|$.

Considering an everywhere convergent power series $\sum_{n=1}^{\infty} \left(\frac{z}{n}\right)^{\lambda_n}$, where $\{\lambda_n\}$ is a suffi-

ciently rapidly increasing sequence of natural numbers, show that for an arbitrary real function $\varphi(r)$ defined for $r \geq 0$, bounded in every finite interval and tending to infinity together with r, there exists an entire function F(z) such that $M(r; F) \geq \varphi(r)$ for $r \geq 0$. In other words, the function M(r; F) can grow arbitrarily rapidly (Poincaré).

A8 Prove that any closed subset of \mathbb{R} is the zero set of a non-negative C^{∞} function.

A9 Suppose that $f \in C^0(\mathbb{R})$, and that $E \in C^0(\mathbb{R})$ is always positive. Prove that there is $g \in C^\infty(\mathbb{R})$ with |f(x) - g(x)| < E(x) for all $x \in \mathbb{R}$.

^{*} Results from complex analysis may substantially simplify the solution of this problem.