Math 504: Complex Variables (Spring, 2000)

In this problem set, U will be a fixed open subset of \mathbb{C} . " L^2 " in the first two problems below is with respect to area measure in the plane.

- C1 a) Suppose that $f \in L^2(D_{\varepsilon}(0)) \cap \mathcal{O}(D_{\varepsilon}(0))$ for some $\varepsilon > 0$. Express the L^2 norm of f in terms of the power series coefficients of f, and prove that, given $j \in \mathbb{N} \cup \{0\}$, there is $C = C(j, \varepsilon) > 0$ so that $|f^{(j)}(0)| \leq C||f||_{L^2(D_{\varepsilon}(0))}$.
- b) Suppose K is compact in U, and $\varepsilon > 0$ is such that $K_{\varepsilon} \subset U$. Given $j \in \mathbb{N} \cup \{0\}$, prove that there is $C = C(j, \varepsilon) > 0$ so that $||f^{(j)}||_K \leq C||f||_{L^2(K_{\varepsilon})}$ for all $f \in \mathcal{O}(U)$.
- C2 Please assume the results of the previous problem.
- a) Suppose $\{f_k\}_{k\in\mathbb{N}}$ is a sequence of functions in $L^2(U)\cap\mathcal{O}(U)$. Prove that if $\{f_k\}_{k\in\mathbb{N}}$ is L^2 -Cauchy, then $\{f_k\}_{k\in\mathbb{N}}$ is u.c.c.-Cauchy.
- b) If f is the u.c.c. limit of the sequence in a), then f is also the L^2 limit of the sequence.
- C3 Suppose $\{f_j\}_{j\in\mathbb{N}}$ is a sequence of functions in $\mathcal{O}(U)$ which converges pointwise to f in U. Prove that there is a dense open subset V of U so that $f \in \mathcal{O}(V)$ and $f_j \to f$ u.c.c. in V. What happens if the sequence of f_j 's has pointwise bounded modulus at every $z \in U$?
- C4 There is $f \in \mathcal{M}(\mathbb{C})$ which has a pole of order j at each $j \in \mathbb{N}$ (and those are its only poles). Exhibit such a function precisely, and give $a, b \in \mathbb{Q}$ so that |f(1+i)-(a+bi)| < .001.
- C5 There is $f \in \mathcal{M}(\mathbb{C})$ which has simple poles at 2^j for each $j \in \mathbb{N}$ (and those are its only poles), and whose principal part at 2^j is $\frac{3^j}{z-2^j}$ for each j. Exhibit such a function precisely, and give $a, b \in \mathbb{Q}$ so that |f(1+i) (a+bi)| < .001.
- **C6** (Ridiculous polynomials, **I**) Show that there is a sequence of polynomials $P_n(z) \in \mathbb{C}[z]$ so that as $n \to \infty$, $P_n(0) = 1$ and $P_n(z) \to 0$ for $z \neq 0$.
- C7 (Ridiculous polynomials, II) Show that there is a sequence of polynomials $P_n(z) \in \mathbb{C}[z]$ so that as $n \to \infty$, $P_n(z) \to 1$ for Re $z \ge 0$ and $P_n(z) \to 0$ for Im z < 0.
- **C8** (Ridiculous polynomials, **III**) Show that there is a sequence of polynomials $P_n(z) \in \mathbb{C}[z]$ so that as $n \to \infty$, $P_n(z) \to 1$ if |z| = 1 and $P_n(z) \to 0$ otherwise.
- **C9** (Ridiculous polynomials, **IV**) Show that there is a sequence of polynomials $P_n(z) \in \mathbb{C}[z]$ so that as $n \to \infty$, $P_n(z) \to 0$ for all $z \in \mathbb{C}$ but $P_n \neq 0$ uniformly on all compact subsets of \mathbb{C} .
- **C10** (Ridiculous polynomials, **V**) Prove that there is $f \in \mathcal{O}(D_1(0))$ so that for all $\zeta \in \partial D_1(0)$ and all $\varepsilon > 0$, the closure of $\{f(s\zeta): 1-\varepsilon < s < 1\}$ is all of \mathbb{C} . (For such f's, radial limits are wildly non-existent! One way to show that such a function exists is to write it an the u.c.c. limit in $D_1(0)$ of a sequence of "ridiculous" polynomials.)
- C11 Give some metric d on $\mathcal{O}(\mathbb{C})$ where convergence in d is equivalent to u.c.c. Find positive numbers A and B with $A \leq d(z, z^2) \leq B$. If the diameter of $\mathcal{O}(\mathbb{C})$ as measured by d is finite, please supply a valid B less than the diameter (include verification of this).