## Math 504: Complex Variables (Spring, 2000)

D will denote the open unit disc in  $\mathbb{C}$  in the problems below. The following problem is from John Conway's Functions of One Complex Variable II.

I1 Let  $p(z,\overline{z})$  be a polynomial in z and  $\overline{z}$  and find a formula for the function u that is harmonic on D, continuous on cl D, and equal to  $p(z,\overline{z})$  on  $\partial D$ .

The following problem is from the text *Introduction to Complex Analysis* by Rolf Nevanlinna and V. Paatero. The problem after it is almost from that book.

**I2** Let the function w(z) = u + iv be analytic in the half-plane  $\text{Im } z \geq 0$  (including the point  $\infty$ ). Prove that  $w(z) = \frac{1}{\pi i} \int_{-\infty}^{+\infty} u(t) \frac{dt}{t-z} + iC$ , where C is a real constant.

**I3** If u(x,y) is harmonic, is there always a non-constant  $C^2$  function v(x,y) so that the product u(x,y)v(x,y) is harmonic?

The following three problems are from the text Complex Analysis by Lars Ahlfors.

**I4** Show that the functions |x|,  $|z|^{\alpha} (\alpha \ge 0)$ ,  $\log(1+|z|^2)$  are subharmonic.

If v is continuous together with its partial derivatives up to the second order, prove that v is subharmonic if and only if  $\triangle v \ge 0$ . Hint: For the sufficiency, prove first that  $v + \epsilon x^2$ ,  $\epsilon > 0$ , is subharmonic. For the necessity, show that if  $\triangle v < 0$ , the mean value over a circle would be a decreasing function of the radius.

**I6** If  $\Omega = D_1(0) \setminus \{0\}$  and if f is given by  $f(\zeta) = 0$  for  $|\zeta| = 1$ , f(0) = 1, show that all functions  $v \in \mathcal{P}_f$  are  $\leq 0$  in  $\Omega$ .

And this problem is from Forster's Lectures on Riemann Surfaces.

I7 Suppose  $Y \subset \mathbb{C}$  is open,  $a \in \partial Y$  and there exists a line segment  $S = \{\lambda a + (1 - \lambda)b : 0 \le \lambda \le 1\}$  with  $b \ne a$  so that  $Y \cap S = \emptyset$ . Show that a is a regular boundary point of Y.

**I8** Suppose H is defined on  $\partial D$  by requiring that H be 0 in the lower half plane and 1 in the upper half plane. Find the solution to the Dirichlet problem for H. If h is the solution, sketch the level set of h for  $\frac{1}{4}$ ,  $\frac{1}{2}$ , and  $\frac{3}{4}$ .

Comment This is easily done by conformal mapping. What is the boundary behavior of h? Where must its limiting values be equal to H by general theory (and why)? What happens elsewhere?

**I9** Let  $A_{r,R}$  be the annular region defined by the restriction r < |z| < R. Let  $t_{r,R}$  be the boundary "data" which is 1 on the inner circle, and 0 on on the outer circle, and let  $s_{r,R}$  be the solution to the indicated Dirichlet problem. What happens to  $s_{r,1}$  as  $r \to 0^+$ ? What happens as  $r \to 1^-$ ?

I10 Let S be the unit square (x+iy) with  $0 \le x \le 1$  and  $0 \le y \le 1$ ). Define boundary information Q by asking that Q be 0 on the bottom (where x=0) and the sides (where y=0 and y=1). Let's suppose that Q on the top (the last side) is either 2x(1-x) or |1-2x| (you choose one of them!). Q is continuous on  $\partial S$  and there is a solution, q to the Dirichlet problem. What is q (try to give as explicit a formula as possible) and what is its boundary behavior? What is  $q(.5, .5) \pm .001$ ? Sketch the level sets where q is  $\frac{1}{4}$ ,  $\frac{1}{2}$ , and  $\frac{3}{4}$ .

Comment Try separation of variables, Fourier series, etc. Look at sums of  $\begin{cases} \sin(nx) \\ \cos(nx) \end{cases}$ 

multiplied by  $\begin{cases} \cosh(ny) \\ \sinh(ny) \end{cases}$ . I suspect you will need computer help for the last two questions: only approximate answers are requested.