
Jagannath Pisharath           Newer Math 

          Fall 2003 

 

Linear Congruential Number Generators 

 A useful, if not important, ability of modern computers is random number 

generation.  Without this ability, if you wanted to, for example, draw a lot of a thousand 

numbers, you’d have to erect a rather large wheel with a thousand partitions and spin, 

spin, spin.  Thus, computerized random number generators (RNG) make our lives easier; 

or so one would think.  It is easier said than done to create an RNG that performs 

satisfactorily.  This is because computerized random number generators do not generate 

random numbers at all.  In fact, the numbers created are called pseudo-random in that 

they can be predicted as long as certain attributes and parameters are known.   

This discussion will focus on a particular type of RNG, namely the Linear 

Congruential Number Generator (LCG).  The LCG is perhaps the most commonly used 

RNG in modern computer applications, but strangely, it was invented by D.H. Lehmer in 

a time when his concept had almost no practical use, as there were essentially no 

computers around [1].  It was only later on, when programmers required a fast way to 

generate a large stream of seemingly random numbers that Lehmer’s LCG method was 

used.  These early programmers were more interested in speed than statistical 

randomness, and thus many, if not all, of the early LCGs were horrendously flawed. 

Lehmer’s LCG involves modulus math.  Since all calculations done within a 

modulus limit the output by the size of the modulus, modulus math is generally faster 

than its traditional counterpart.  Furthermore, a modulus allows there to be a cycle of 



numbers, which is essential in generating random numbers because it provides a fixed 

range of output.  This known range of output allows random output to be ‘uniformized’ 

into numbers between zero and one.  For example, generating random numbers with a 

modulus of fifteen means that any digit that is outputted can be divided by fifteen to 

convert it to a uniformed number; that is, dividing by a modulus allows an easy 

conversion to the accepted format of expressing random numbers. 

The basic form of an LCG is [2]: 

( ) mcIaI nn mod1 +⋅= −  

where A, M, and C are pre-selected constants.  A is the multiplier; it multiplies the 

previous value of the equation, In-1, times itself.  C is called the increment, and typically 

this is set to zero.  Cases where C ≠ 0 will be discussed later.  Finally M, the modulus is 

arguably the most important number of the three.  As said before, M dictates the upper 

limit of output from this recursive function. 

 The process of generating random numbers with an LCG is initiated by another 

pre-selected constant, called the seed.  The seed is in fact I1, the first number in the LCG 

output stream. LCGs and their parameters can be written in function notation such as 

LCG (A,C,M,seed).  For example, the LCG (3,0,10,1) would be initiated by performing 

the calculation , which equals 3.  Then the next iteration is 

performed, with I

( ) 10mod0131 +⋅=I

n-1 being 3 instead of 1.  Thus the LCG (3,0,10,1) would yield an output 

of 1,3,9,7…  Regarding the seed, S.L Anderson recommends using another pseudo-RNG 

based upon the current year, month, day, hour, minute, and second to ensure maximum 

randomness, but it should be noted that it is sometimes useful to use the same seed 

multiple times for testing purposes [3]. 



 The selection of an LCG’s parameters A, C, and M can make or break the 

generator in terms of its randomness and by extension, usability. Since the use of 

modulus math in LCGs creates a fixed range of output, it is very easy to use up and 

exhaust the numbers within the period and end up with an LCG stream that repeats.  For 

example, the LCG below has a definite problem:  

 LCG (3, 0, 32, 1) = 1, 3, 9, 27, 17, 19, 25, 11, 1, 3, 9… 

The numbers start to repeat after the eighth iteration.  In LCG jargon, this is called a 

period [1].  This LCG has a period of eight, and if called upon 

to deliver any more than this amount of numbers, it would start 

to simply repeat these eight numbers over and over again. 

 Some LCGs have what’s known as a full period [1].  

That is, the LCG output stream visits every number within the 

modulus before repeating.  If the above example had visited every number from 1 to 31, 

it would be a full period LCG.  Thus, a full period LCG has a period of m-1.  The key to 

a successful LCG is to employ a full period that is very large (at least a few million) so 

that it is not exhausted by a reasonable request for random numbers.  

 Apart from worrying about the period, when creating an LCG, one has to be 

mindful that the modulus and multiplier (M and A) are relative primes (that is, their 

greatest common denominator is one).  This is a crucial requirement.  Take for example 

the below LCG.  A glimpse at the output stream of the LCG shows a fatal flaw:  

 LCG (2, 0, 4, 1) = 1, 2, 0, 0, 0… 



The reason for this collapse is the fact that the modulus is divisible by its multiplier and 

thus, they are not relatively prime.  The easiest way to ensure that the two numbers are 

indeed relatively prime is to just set the modulus as a prime number [3]. 

 As mentioned before, the first LCGs were optimized for speed, not randomness. 

Thus, their parameters were often numbers which computers could process quickly.  

Many of the early LCGs used moduli that were a power of two (for example, 212).  

Calculations with these numbers can be done efficiently by computers, but alas, they are 

non-prime integers, and thus prone to problems.  Regarding the ubiquity of flawed LCGs, 

Donald Knuth advises “…look at the [random number] subroutine library of each 

computer installation in your organization… Try to avoid being too shocked at what you 

find. [1]” 

Now that the modulus (M) and multiplier (A) have been analyzed, the increment 

(C) can be discussed.  As said before, the increment is almost always set to zero.  

However, LCGs where C≠0 are called Mixed Linear Congruential Number Generators 

(MLCG).  The advantage of MLCGs is that they can be employed to satisfy the condition 

when In-1 = 0, In ≠ 0.  This means that the LCG stream can have an output of zero without 

collapse, and consequently, a full period MLCG has a period that is a length of M rather 

than M-1.  No real advantage has been found to using MLCGs over LCGs, and thus, they 

are not very prominently used today [4]. 

 Knuth’s aforementioned statement accurately reflects the magnitude of the 

‘badness’ of the first LCGs, which were ostensibly used for scientific and professional 

use.  But what constitutes a bad LCG?  Park and Miller suggest using a three-test system 

to ascertain the quality of an LCG [1]: 



 Test 1: Does the LCG have a full period? 

  A LCG without a full period would likely exhaust its period within a few  

  iterations, no matter how big the modulus is. 

 Test 2: Is the output random? 

  This requisite is rather reasonable, if not obvious. 

 Test 3: Can the LCG be implemented efficiently with a 32-bit computing 

 architecture 

  This particular test, though important when it is time to actually   

  implement an LCG, is not too relevant to the scope of this discussion. 

Out of these three tests, test two is the one that most of the early LCGs have failed.  

There is a gamut of statistical trials that can be performed, like spectral and chi-squared 

tests, to assess an output stream’s randomness.  Here, we will focus only on the 

subjective two and three dimensional dot-plot tests of LCG output to determine 

randomness.  (A one dimensional dot-plot test is omitted because I have not found it very 

useful in giving significant feedback regarding the quality of a given LCG stream.)  

These dot-plots are constructed using successive pairs of numbers derived from the LCG 

being tested.  That is, the ordered pairs of a 2-d dot-plot of a hypothetical LCG would 

consist of the points (I1,I2),(I3,I4)..., while the same LCG represented in a 3-d dot-plot 

would consist of the points (I1,I2,I3),(I4,I5,I6)... 



Here is an example LCG (1277, 0, 131072, 1) to which the 2-d dot-plot test has 

been applied to with 5,000 trials [5]: 

 

 

 

 

 

 

It is easy to see the emerging linear bands in this graph.  The modulus of this LCG is 

even, and the period is only 32,769 (that is, it is not a full period).  Trying to derive more 

than 32,769 random numbers with this LCG will result in repetition. 

The next example is the infamous IBM RANDU LCG (65539, 0, 2147483648, 

123456789), which was made by the company for its 360 System computers in the ‘60’s 

[6].  A 2-d test with 5,000 trials shows no apparent problems [5]: 

And indeed, this is perhaps why RANDU was put into use on a wide scale basis.  It is 



only until a 3-d plot is made of the LCG at 5,000 trials that problems become visible [5]: 

 

The modulus of RANDU was a power of two (231), which in hindsight was a mistake. 

 In response to these flawed LCGs, Park and Miller have devised a better one, the 

Minimal Standard LCG.  Their message was that this LCG should be used as a 

benchmark in terms of randomness.  That is, if one were to create an LCG, it should only 

be used if it can be proven to be ‘more random’ than the Minimal Standard LCG.  The 

LCG uses a prime modulus of 231-1 and a multiplier of 16807.  A 2-d test with 5,000 

trials and a 3-d test with the same number of trials show no apparent randomness: 

 

Minimal Standard LCG (16807, 0, 231-1, 1 1) [5] 



 As a side note, here is the LCG that Maple uses: 

LCG(427,419,669,081      999,999,999,989      0)    [6] 

One would hope that since Maple is a relatively new program, that it would only use its 

own LCG if it were better than the Minimal Standard one.  Another LCG that has been 

developed lately is the Mersenne Twister LCG algorithm, which was invented in 1997 by 

Matsumoto and Nishimura.  It has a period of 219937-1, and is “proven to be 

equidistributed in 623 dimensions (for 32-bit values), and runs faster than all but the least 

statistically desirable generators. It is now becoming increasingly accepted as the random 

number generator of choice for all statistical simulations and generative modeling. [7]” 

 LCGs, especially newer versions such as the Minimal Standard, can produce sets 

of numbers that can pass any statistical test of randomness, but it should be kept in mind 

that there is nothing random about LCG output.  Von Neumann observes, “Anyone who 

considers arithmetical methods of producing random digits is, of course, in a state of sin. 

[7]" Indeed, given the parameters of the algorithm, any LCG sequence can be repeated.  

Furthermore, one has to keep in mind the period of the LCG before implementing it.  For 

example, the Minimal Standard LCG, with its period of about two billion, would be ill-

equipped to handle a simulation where every person on earth is assigned a random 

number.  And even if a simulation would not exhaust the period of an LCG, there is no 

guarantee that any output from an LCG, even the Minimal Standard, is statistically 

random.  That is, there may be unknown flaws in them.  Thus it is probably unwise to 

rely upon LCGs in certain situations where randomness is a top priority. 

 If LCG output can indeed be repeated, and thus predicted, one has to wonder 

about cases where the unpredictability of the RNG is paramount.  Case in point: It would 



be disconcerting to know that slot-machine manufacturers could supply the information 

of when their machines would pay out to casino owners.  In fact, it turns out that slot-

machines do indeed use what seems to be an LCG to determine when a player has hit the 

jackpot.  When the slot-machine starts to spin, its internal LCG spits out thousands of 

numbers.  Then, when the player pulls the handle, the number that was in memory at the 

precise time of the handle-pull is selected to determine whether or not the player has won.  

Thus, slot-machines use a mechanical-LCG that is more or less unpredictable.  

 Even with their deficiencies, LCGs are a good way to get large streams of pseudo-

random numbers for most situations.  As long as one is aware of an LCG’s shortcomings 

and capabilities, they can be used with confidence.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



References: 
 
1 Stephen K. Park and Keith W. Miller 

Random Number Generators: Good Ones Are Hard To Find 
Communications of the ACM, 31(10):1192-1201, 1988. 

 
2 Linear Congruential Number Generators   

http://www.taygeta.com/rwalks/node1.html 
 
3 Random Number Generators 

http://csep1.phy.ornl.gov/rn/rn.html 
 
4 Generating Random Numbers 

http://www.brpreiss.com/books/opus4/html/page472.html 
 
5 Random Number Generator [2-d and 3-d dot-plots] 

http://www.cs.pitt.edu/~kirk/cs1501/animations/Random.html 
 
6 [Strangely, the site is inaccessible, but it was working fine a month ago!] 

http://crypto.mat.sbg.ac.at/results/karl/server/server.html 
 
7 Wikipedia: Pseudorandom Number Generator 

http://en.wikipedia.org/wiki/Pseudorandom_number_generator 
 
8 Howstuffworks “How Slot Machines Work” 

http://howstuffworks.lycoszone.com/slot-machine3.htm 
 


