

Knapsack and Its Applications To Subset Cryptosystems
By: Gregory Ryslik

 2

I. Background on Knapsack and Its Inventors

 Whitfield Diffie and Martin E. Hellman first published the notion of a public key
cryptography scheme in 1976 in their paper “New Directions in Cryptography”.
This scheme was the first to implement the idea of key agreement using the discrete log
problem (2). Within the paper, Diffie and Hellman note the idea of trap-door one-way
functions and the possibility of using a knapsack problem for future cryptography. They
then go on to mention that great care must be taken in choosing the parameters of such a
function or else solving the knapsack problem becomes computationally feasible (6). In
1978, (just months after Rivest, Shamir and Adleman published the first public-key
cryptosystem, RSA (2)) Ralph C. Merkle and Martin E. Hellman, both members of the
Electrical Engineering department at Stanford University discovered a few trapdoors in
the knapsack function. With this discovery, they became the inventors of the first
knapsack cryptography scheme (5). Since their discovery, Professor Hellman briefly
taught at MIT from 1969-1971 at which point he returned to Stanford. There, he has
served as the Associate Chair of the Electrical Engineering department, the Associate
Dean for Graduate Studies of Minority Students and Chairman of Electrical Engineering
Graduate Admissions. In addition, Hellman has also written more than sixty technical
papers and holds a number of both domestic and foreign patents (8). Ralph C. Merkle on
the other hand went to work for Xerox PARC in 1988 where he has been conducting
research on computational nanotechnology (9). He is currently a professor at Georgia
Tech’s College of Computing, holds eight patents and was a co recipient of the 1998
Feynman Prize for Nanotechnology(8).

II. Introduction to the Knapsack Problem

 The subset-sum problem (commonly known as the knapsack problem) is to
determine whether or not some subset of positive integers a1,…an (known as weights)
adds up to a sum s. This is the same as whether or not there is a set of variables x1,…xn
such that

 (1.0) ∑
=

=
n

j
jjaxS

1

}1,0{∈jx

The knapsack problem is considered to be quite difficult and is classified under the group
of problems known as NP-Complete (5). One method to determine whether or not
equation (1.0) has a solution is to compute all the

∑
=

n

j
jjax

1
 . (1.1) }1,0{∈jx

 3

However, this process takes O(2n) time. This is due to the fact that for every aj a binary
decision of whether or not this element is in the subset needs to be made. However, this
running time has actually been reduced to O(n2^n/2) through the following algorithm.
First compute:

 
}{

2/

1
1 ∑

=

=
n

j
jjaxS

 AND for all (1.2)
 

}{
2/

2 ∑
>

−=
n

nj
jjaxsS }1,0{∈jx

This process takes O(2n/2). Then, proceed to sort the sets S1 and S2 (which is O(n2n/2))
and then scan them for an identical element (which is O(2n/2)). An identical element in
both sets would occur if and only if the there is a solution to (1.0). (3)

III. Knapsack and its applications in cryptosystems

 The idea behind all knapsack cryptosystems is to use a public set of weights to
encode the message, send a sum S and then have the receiver use his private set of
weights to decode the message. The cryptanalyst, having only the public set of weights
available would be forced to solve a NP-Complete problem while the receiver would just
have to solve a polynomial time problem. (3)

IV. Transmission of the message

One of the prime advantages of the knapsack system is that it lends itself
exceptionally well to computer transmissions due to the fact that the xj is either a 0 or a 1.
Thus, when the computer wants to send a bit stream (which consists of a sequence of 0’s
and 1’s), it can simply take the bit and use it as the xj in the summation

∑
=

=
n

j
jjaxS

1
. (1.3)

For example, if the user wanted to send the bit stream 01011 and the set of weights was
5,14,25,50,95, the user would have to perform the following summation. S= 0*5 + 14*1
+25*0+50*1 + 95*1 = 64. This can be clearly seen by “overlaying” the bit stream with
the set of weights as follows:

0 1 0 1 0
5 14 25 50 95

Then, the weights with the 1’s on top would be added. Finally, the last part of the
transmission would be to simply send the 64. Note that the actually bit stream is never

 4

sent, just the sum S. It is the receiver’s task to actually solve this knapsack problem and
recreate the original bit stream. However, as mentioned earlier, the knapsack problem
falls under the category of NP-Complete and thus is difficult to solve. Hence, a method
must created in order to allow the receiver to recreate the original bit stream in a
reasonable time frame.

V. Simple Knapsack Problems

 Due to the fact that in general knapsack problems fall in the complexity category
of NP-Complete, a simple knapsack problem must be devised in order for the receiver to
be able to solve the problem. One such example arises if the set of weights used forms a
super-increasing sequence, which is defined as a sequence satisfying for all :

. (1.4)

nj ≤<1

∑
−

=
>

1

1

j

i
ij aa

Thus, if the next element in the set is larger than the summation of all the previous
elements the knapsack problem is easy to solve (3). This comes from the fact that the xn

th

term (where n is the total number of elements in the set) is 1 if and only if: ∑
−

=

≥
1

1

n

j
jaS .

(1.5)

For example, the previous set of weights used is super-increasing. Thus if the receiver
wanted to recreate the bit stream (as in the previous example) and was sent the sum 64,
the following algorithm would have to be executed in order to recreate the original bit
stream. Note the highly iterative process which lends itself easily to computer code.

1) check if S : no. Thus x95≥ 4 = 0;
2) check if S : yes. Thus x50≥ 3 = 1. Subtract 50 from S to get S= 14.
3) check if S : no. Thus x25≥ 2 = 0;
4) check if S : yes. Thus x14≥ 1 = 1; Subtract 14 from S to get S = 0.
5) check if S : no. Thus x5≥ 0 = 0

Hence, reading from step 5 back to step 1 (x0 up to x5) the original bit stream is
reconstructed to be 01010.

VI. Making it hard for the cryptanalyst to decipher

While the above process is good from the point of view that it is easy for the
receiver to obtain the original message, this protocol is invalid due to the fact that the
cryptanalyst can just as easily follow the same steps and arrive at the original message.

 5

Hence, the basic idea of all knapsack cryptosystems is to change secret weights b1,…,bn
(which was the super-increasing sequence) into a public set a1,…,an which would have no
apparent structure to the cryptanalyst.

Merkle and Hellman created the first and most famous of these trap-door
functions that transform the private set to the public set in 1978. The transformation
follows the following algorithm:

1. Choose positive integers M and W where the greatest common divisor of M and

W is 1 (abbreviated gcd(M,W) = 1) and . (1.6) ∑
=

>
n

j
jb

1
 M

2. Then the receiver computes)(mod MWba jj ≡′ . (1.7)

i. Note that: a’j cannot be = 0 since gcd(M,W) = 1.

3. Then the user chooses a permutation π on the set {1,…,n}.

4. Set a . (1.8))(jj a π′=

Hence the aj’s are used for the public weights while M and W and π are kept secret as
well as the original super-increasing sequence of the bj’s. (5)

For example:

1. In order to form a public set of weights from the super-increasing sequence
{5,14,25,50,95}1, the following operations would have to be performed:

2. Sum up each element in the private set of weights to get a total of 189.
3. Thus since M must be greater than 189, let M be 225.
4. Now select a W where the gcd(W,M) is 1. Let W be 17.
5. First, the receiver modifies the weights using modular arithmetic as in step 2 of

the algorithm to get: 85,13,200,175,40
6. Now a permutation must be chosen. Suppose the permutation is:
 1-> 3, 2->1, 3->4,4->2, 5->5.
7. Thus the set of public weights becomes: 13,175,85,200,40.

Note that the sequence is no longer super-increasing and also due to the permutation any
element does not necessarily match up to its original in the private set (i.e. the first
element in the public set was not necessarily the smallest element in the private set).

Thus resulting aj’s would be difficult for the cryptanalyst to solve.

1 This super-increasing sequence is technically invalid. In order to create a super-increasing sequence that
when encrypted does not lend itself to be easily broken while at the same time does not need enormous

storage potential, the following restrictions are imposed: b n
n

j

t t
n bnjbb j

21

11 2,2,,2 ≈≤≤>≈ ∑ −

=

(where n usually ranges anywhere from 100 to 200). (5)

 6

The above method is called a singly-iterated Merkle-Hellman system. A more complex
variety of the above procedure is what is known as the multiply-iterated Merkle-Hellman
system. This system iteratively chooses a M and W for each element in the private set of
weights based upon the following guidelines:

∑
=

−>
n

j

k
jk aM

1

)1(
, , and gcd(Mk

k
j

k
j Waa)1()(−≡)(kMMod k, Wk) = 1.

This method hides the original private set even more successfully than the singly iterated
system (3). For the scope of this paper however, the remainder of the examples will be
based upon the singly-iterated system in order to decrease the amount of computational
steps needed to be shown.

VII. Sending the transmission on a modified set of public weights

 Once a public set of weights is published, the sender sends his data based upon
the public set which is difficult to decode. The sum S would be calculated based on the
formula (1.1) where the aj’s form the public set and then sent to the receiver.

For example:
Suppose the sender wanted to encrypt the message 10100.
The sender would perform the following 13*1 + 175*0 + 85*1+200*0 + 40*0 = 98.
Thus the sender would send the sum S = 98. (3)

 VIII. Deciphering the transmission on the receiving side.

 The receiver, upon receiving S would then have to recreate the original bit stream
sequence. However, due to the fact that S was calculated on the public set, the receiver
would have to use the following transformations to successfully solve the problem.

The receiver computes C (mod M). (1.8) 1−≡ SW

 Note: −W denotes the multiplicative inverse of W modulo M. 1

However, C must then equal the following:

(1.9)
)(mod

)(mod)(mod

1
)(

1

1
)(

1

1

Mbx

MWaxMWaxC

n

j
jj

n

j
jj

n

j
jj

∑

∑∑

=

−

=

−

=

=

′==

π

π

Thus, the user would arrive back at the original knapsack problem that is based upon a
super-increasing sequence and is easy to solve. (3)

 7

For instance, if the receiver received the sum 98 based upon our previous set of public
weights (section V), the receiver would proceed to do the following operations.

1) Calculate C = 98*53 = 19 as per formula (1.8)
2) Then he would solve the knapsack problem based upon the secret bj’s and the C
calculated in step 1.

1) check if S : no. Thus x95≥ 4 = 0;
2) check if S : no. Thus x50≥ 3 = 0.
3) check if S : no. Thus x25≥ 2 = 0;
4) check if S : yes. Thus x14≥ 1 = 1; Subtract 14 from S to get S = 5.
5) check if S : yes. Thus x5≥ 0 = 1.

 The result is 11000. However, since the sum was created on a permuted set of weights,
the receiver would have to permute his result to end up with the original sequence. Using
the permutation defined in section V on 11000, the receiver arrives at 10100, which was
the original message (as sent by the sender in section VI).

IX. Benefits of the knapsack system

 The main benefit of an encryption scheme utilizing the knapsack protocol is due
to its speed. RSA which is currently the most widely used system today can only encrypt
at the rate of 104 bits per second (using the original modulus of 430 bits and special
purpose chips). With software restrictions the encryption rate drops down further to the
rate of 100 bits per second. Thus at its best, the RSA system works about 100 to 1000
times slower than the classical key cryptosystems such as DES(Data Encryption
Standard) which with software restrictions runs at about 105 bits per second (on special
purpose chips this figure jumps up to tens of millions of bits per second).
 However, using the singly-iterated Merkle-Hellman scheme with an n roughly
equal to 100 (this n is large enough due to the fact that even the best known way to solve
a knapsack problem is O(2n/2)), allows the encryption rate to be 100 times faster than
RSA. (3)

X. The downfall of Knapsack

 Unfortunately, even though knapsack is significantly faster than RSA, the singly
iterated Merkle-Hellman system was broken by Shamir in 1982 (1) (for which Shamir
received a grand total of $100 (2)). As mentioned earlier, the singly-iterated Merkle-
Hellman system used the fact that using the series of transformations (as described in
section VI), a trap-door function would be created that would be difficult for the
cryptanalyst to solve. Shamir was able to show that through a few basic assumptions (that
are inherent to choosing a valid knapsack as discussed in the footnote on page 4), a
cryptanalyst could arrive at the original W and M used in the private set of weights by
solving a system of equations using Lenstra’s integer programming algorithm. Due to the

 8

fact that this algorithm runs in polynomial time, the derivation of W and M becomes
computationally feasible. This rendered the original knapsack scheme insecure and
useless from the point of view of secure communication (1). To counter this, Merkle and
Hellman came up with the multiply-iterated scheme. In response, Ernest F. Brickell,
using roughly an hour of Cray-1 time was able to break a multiply-iterated Merkle-
Hellman system that used a series of 40 iterations (which was well inside the set
parameters as to the number of iterations). Due to the fact that the knapsack scheme was
broken, the communication industry chose to use the RSA protocol, which is
unfortunately significantly slower.

However, there are a number of knapsack systems which have not been broken.
For example, the system designed by Masakatu Morrii and Masao Kasahara in 1988
which involves a discrete log with a hard multiplicative knapsack has not yet been
successfully attacked. (2) It remains to be seen whether the communications industry will
decide that this type of a knapsack encryption scheme is in fact secure enough to use as a
secret communication protocol.

 9

Bibliography:

(1) A polynomial-time algorithm for breaking the basic Merkle - Hellman
cryptosystem
Shamir, A.;
Information Theory, IEEE Transactions on , Volume: 30 Issue: 5 , Sep 1984
Page(s): 699 –704

(2)http://www.ics.uci.edu/~mingl/knapsack.html
 Ming Kin Lai

(3)http://www.dtc.umn.edu/~odlyzko/doc/arch/knapsack.survey.pdf
 A.M. Odlyzko

(5) Hiding information and signatures in trapdoor knapsacks
Merkle, R.; Hellman, M.;
Information Theory, IEEE Transactions on , Volume: 24 Issue: 5 , Sep 1978
Page(s): 525 –530

(6)New directions in cryptography
Diffie, W.; Hellman, M.;
Information Theory, IEEE Transactions on , Volume: 22 Issue: 6 , Nov 1976
Page(s): 644 –654

(7) http://www.house.gov/science/merkle_062299.htm
 Ralph C. Merkle

(8) http://gtisc.gatech.edu/hellman_bio.htm

(9) http://www.merkle.com/
 Ralph C. Merkle

http://www.ics.uci.edu/~mingl/knapsack.html
http://www.dtc.umn.edu/~odlyzko/doc/arch/knapsack.survey.pdf
http://www.house.gov/science/merkle_062299.htm
http://gtisc.gatech.edu/hellman_bio.htm
http://www.merkle.com/

