Lecture 14¹/₂: Intermezzo BIRTHDAY TIME!

Suppose you have a crowd of people. When will two of them share a birthday?*

Probabilistic answer

This question is studied in almost every elementary probability text. Suppose we had just 3 people, and we want to figure out the chance that these 3 people have different birthdays. The first person "selects" a birthday with no constraint. The second person has probability $\frac{364}{365}$ of selecting a birthday which misses the first person's. The third person has probability $\frac{363}{365}$ of selecting a birthday which misses both the first and second person's birthday. Thus the probability that 3 people have distinct birthdays (that everything described happens) is $\frac{(365)(364)(363)}{(365)(365)(365)}$. This is about .99180, and therefore a birthday will be shared with probability 1 - .99180 = .00820.

Now suppose there are n people in the crowd. The probability that no two of them have the same birthday is

 $n \, \mathrm{terms}$

,				`
(365)	(364)	(363)	(365 - n + 1)	
$\left(\frac{365}{365}\right)$	$\left(\frac{365}{365}\right)$	$\left(\frac{365}{365}\right)$	$\left(\frac{365-n+1}{365}\right)$	

and as *n* increases, the value of this fraction shrinks. For n = 23, it is about .49270, less than $\frac{1}{2}$. Therefore, "more than half the time", a crowd with at least 23 people will have some pair sharing birthdays.

A more definite answer

If you have more than 365 people in the crowd, at least 2 of them will share a birthday.

^{*} Please disregard leap years!