Experimental Math: one of the top 75 Byrne Seminars in the fall 2008 semester!

Searching for solutions to equations with Maple

I am happy to declare that the material in this discussion was inspired by ideas of Eric
Rowland and will be presented by him. I thank him very much.

Geometry

Take a right triangle, any right triangle. Put squares on each
of the sides. The area of the square on the side opposite the
right triangle (that side is called the hypotenuse) is equal to the
sums of the areas of the squares on the other two sides (called
the legs). This is a fascinating fact, and has apparently been
known to human beings for thousands and thousands of years
(according to some sources, at least 4500 years™).

In many cultures, right angles were “constructed” and used in building and surveying with
the use of specific triangles: 3-4-5 right triangles (3% + 4% = 52) and certainly 5-12-13
triangles are the triangles with shortest sides. These triangle lengths and many others
certainly were known 2500 years ago**. How can we find Pythagorean triples, that is,
three integers a, b, and ¢ which satisfy the equation a? + b? = ¢??

Initial attempts
We will create some Maple procedures to find Pythagorean triples. Although our methods
will not be elaborate, the procedures will be simpler if we use some commands that haven’t
been discussed yet. Here is an initial procedure mostly to show you a command you may
not have seen before.
squares := proc(n)
local x;

for x to n do if type(sqrt(x), integer) then print(x) end if end do
end proc;

You may enter this at the Maple screen. I have followed Mr. Rowland’s suggestion and
presented the procedures here with line breaks and indenting which are supposed to help
human beings understand them. Internally Maple doesn’t care about presentation that
much. If you make typing errors or have other problems, Maple will gently call your
attention to them. You can fix each one until what remains is a gem of computer directions.
What’s new here? Well, the line local x tells Maple that there’s a variable in the procedure
which is referred to inside the procedure and doesn’t have any meaning outside it. Also,
we introduced the command type which has many possible uses. For example, consider
type(Irving,cat). This command returns true of Irving is a cat, and returns false if
Irving is not a cat. Here “cat” stands for one of the types which is recognized by Maple.
There are almost 500 different types recognized by Maple. You could find out about them
by typing the command help(type);. You'll see a long list. Here we want to check if
sqrt (x), the square root of z, is an integer, a type Maple recognizes. Some examples of
the use of type follow.

* T'll put links to some historical discussions on the course web page for this meeting.
** Smart human beings have been around quite a while.

1

> type(1/3,integer);
false
> type(sqrt(2),integer);
false
> type(56°3+338001,integer);
true
So this should give you some idea what type does. This is the the result of one use of
squares:

> squares(10);
1
4
9

This is satisfactory but hardly exciting. There are easier ways of printing the first 3 squares
(seq(j~2,j=1..3); for example).
Here is an attempt to find Pythagorean triples:
pythag := proc(n)
local x, y;
for x from 1 to n do for y from 1 to n do
if type(sqrt(x°2 + y"2), integer) then
print(x, y, sqrt(x°2 + y"2))
end if
end do
end do
end proc;

I needed three attempts to type this correctly, matching parentheses and end’s. pythag
checks square roots of sums of squares of pairs of* integers from 1 to n, and prints out if the
result is an integer. This is a simple way to get Pythagorean triples. The instruction for
x from 1 to n do for y from 1 to n do makes the variables z and y run each from 1
to n. They do the instructions which follow until the corresponding end do is reached.
One linguistic (7) element should be mentioned. When Maple echoes the line

for x from 1 to n do for y from 1 to n do

you will actually see the following instead

for x to n do for y to n do

The designers of Maple decided that for “loops” which begin with 1 are so common and
that from 1 doesn’t need to be shown. This can be unexpected to the inexperienced.
Here is a use of this procedure:

> pythag(10);

~

o O A W
> S0 o
~ M~ O O

~

S D

~

* Four of’s in a row!

There seems to be some duplication. Let’s improve pythag.

Improvements
We would like to make our procedure give more satisfactory results. At first we would
like to get rid of duplications. We could consider 3, 4, 5 and 4, 3, 5 to be the same
result. What we are doing now is customary. It is both irritating and very common. First,
get something that works, and then tweak it to improve it (but always check that the
“improvements” do not destroy the functionality!). Of course, if you can get a better basic
idea, that’s neat. But small, incremental improvements help.
pythagB := proc(n)
local x, y;
for x to n do for y from x to n do
if type(sqrt(x°2 + y"2), integer) then
print(x, y, sqrt(x°2 + y"2))
end if
end do
end do
end proc;

Look closely at the do instruction. z still runs from 1 to n but now y goes from x to n
only. Therefore 4, 3, 5 should not appear, but 3, 4, 5 should. Indeed, here are results:
> pythagB(10);

3,4,5
6, 8, 10

and even
> pythagB(20);

This is very nice, since we have displayed the most familiar Pythagorean triples (the first
two answers above). We could be even more critical, and observe that 3, 4, 5 and 6,
8, 10 are really sort of the same. That is, the second triple is just twice the first triple,
and really the novelty is the first triple, and the second one just echoes the first. Actually,
there would be lots of other such triples (9, 12, and 15, and 300, 400, and 500). Let’s try
to eliminate the triples with a common factor.

We can compute the greatest common divisor of some integers with the command igcd
(integer greatest common divisor). Look:

> iged(8,27);

> iged(9,27);

> iged(frog,toad);

iged(frog, toad)
The last command was my effort to introduce humor. Maple grimly declares that it doesn’t
know frog and toad and can’t compute the quantity desired. This is indicated by returning
what I asked with no change at all.
Here is an improved version of our search:

pythagC := proc(n)
local x, y;
for x to n do for y from x to n do
if type(sqrt(x°2 + y"2), integer) and igcd(x, y) = 1 then
print(x, y, sqrt(x"2 + y~2))
end if
end do
end do
end proc;

This is neat because:

> pythagC(20);
3,4, 5
5,12, 13
8, 15, 17

Pythagorean triples with no common factors are called “primitive Pythagorean triples”
and our procedure pythagC produces a list of these triples in the range specified.

Other equations?

We can experiment and alter the procedures we already have to investigate other equations.
Consider the equation a? + b? = 2¢%. Can we find a list of (primitive!) solutions to this
equation? if we want to know when a? +b? is equal to 2 multiplied by a square, we consider
type (sqrt ((a"2+b~2)/2,integer). This divides a? + b2 by 2 and detects if square root
of the result is an integer. So we can create another procedure.

pythag2 := proc(n)
local x, y;
for x to n do for y from x to n do
if type(sqrt(1/2*x°2 + 1/2*y"2), integer) and iged(x, y) = 1
then print(x, y, sqrt(1/2*x°2 + 1/2*y"2))
end if
end do
end do
end proc;

In all this I am copying the spacing that Maple uses when it “prettyprints” the results.
One crazy thing that Maple also does (I don’t know why!) is that when the instruction
type(sqrt((x°2 + y~2)/2, integer) is entered, then type(sqrt(1/2*x"2 + 1/2*y"2), integer)
is printed. This is logically the same, but I don’t understand why the change is made.
Here is a result:

> pythag2(30);

1,1,1
1,7, 5
7,17, 13
7,23, 17

This is very neat. The machine works for us.

Just one more ...
How about a? + b? = 3c¢2? A small alteration in pythag2 will work. We're only making
small changes at each step!

pythag3 := proc(n)
local x, y;
for x to n do for y from x to n do
if type(sqrt(1/3*x"2 + 1/3*y"2), integer) and igcd(x, y) = 1
then print(x, y, sqrt(1/3*x"2 + 1/3*y"2))
end if
end do
end do
end proc;

And here is some output:

> pythag3(10);

That’s the result, NOTHING. In fact, here is more output:
> pythag3(1000);

The result, also NOTHING. Oh well, I should also mention that pythag3(10) took only
.01 seconds (one one-hundredth of a second) on my home computer while pythag3(1000)
took about 20 seconds. Maybe this sort of searching is not so good. Maybe there are/are
not solutions to this equation. What does this experiment make you think? Can some
argument be made?

And now something rather new ...

Leonhard Euler (1707-1783) was one of the very greatest mathematicians in European
history, a very clever, hardworking person. He conjectured (guessed, darn it!) that the
equation A* + B* + C* = D* had no integer solutions. Centuries went by, and no one
knew if this conjecture was correct. You (and I) can certainly try examples, and I’'m sure
many people did, but no solutions were found. I am also sure that there was quite a lot
of work done by both professionals and amateurs (which are we?) during those centuries.
The equation seems so closely related to the famous Fermat equation.

In 1988, Noam Elkies published a paper entitled “On A*+ B*+C* = D*” in Mathematics
of Computation. There will be a link to the paper on the web page associated with this
meeting providing access to the article from any Rutgers terminal. You can understand a
portion of this article. Elkies observes that

2682440* + 15365639* + 18796760* = 20615673*

5

Elkies did not get this solution by a direct search, also called a brute force search or an
erhaustive search. Such searches may not be practical without supporting evidence. A
direct check of all the integers in the range up to those written above would take some
time (that’s an understatement!). So Elkies did some very clever mathematics to try to
locate a range of numbers to search, and also to try to describe certain likely values of A,
B, and C'. He was successful, but there was substantial numerical and theoretical effort
involved. You can check the equation above with Maple. I just did, and it wasn’t hard,
and didn’t take very long (typing the numbers accurately took longer).

The postscript

Elkies wrote a short P.S. in his paper. He declared that while his (counter!)example to
Euler’s conjecture “still seems beyond the range of reasonable exhaustive computer search”,
his result inspired an effort to find smaller solutions. A person with access to fast highly
parallel computer systems (many c.p.u.’s) tried to get a smaller solution. Success was
achieved after about 100 hours of computation on fast machines with many processors.
Roger Frye of the Thinking Machines Corporation found that

95800%* + 217519* + 414560* = 4224814

which is still not obvious to me, but Maple does agree.

My P.S. Compare our work on a? + b? = 3c¢?. Our amateur (?) search reported no
solutions, and there actually are no solutions. Numbers are funny, since Euler’s equation
does have solutions but they are not easy to discover.

