(20)1. Evaluate the indicated limits exactly. Give evidence to support your answers.

a)
$$\lim_{x \to -2} \frac{x^2 - x - 6}{x + 2}$$

a) $\lim_{x\to -2} \frac{x^2-x-6}{x+2}$ **Answer** $x^2+x-6=(x-3)(x+2)$. The quotient is x-3 which has limit -5 as $x\to -2$.

b)
$$\lim_{x \to 0} \frac{\sqrt{3+x} - \sqrt{3}}{x}$$

Answer Multiply top and bottom by $\sqrt{3+x}+\sqrt{3}$. The top then becomes (3+x)-3=x which cancels the x on the bottom to leave $\frac{1}{\sqrt{3+x}+\sqrt{3}}$. This has limit $\frac{1}{2\sqrt{3}}$ as $x\to 0$.

c)
$$\lim_{x \to 1^-} \frac{3x + \ln x}{x}$$

Answer This function is continuous at 1 and its value there is $\frac{(3\cdot 1 + \ln 1)}{1} = 3$ since $\ln 1$ is 0.

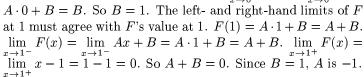
$$d) \lim_{x \to 0^+} \frac{2}{\sin x}$$

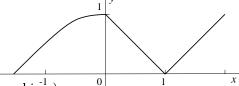
Answer The bottom is a small positive number when $x \to 0^+$ while the top is fixed at +2. The quotient therefore is a large positive number, and the answer is $+\infty$.

2. Suppose that the function F is described by $F(x) = \begin{cases} \cos x, & \text{if } -\frac{\pi}{2} \le x \le 0 \\ Ax + B & \text{if } 0 < x \le 1 \\ x - 1 & \text{if } 1 < x \le 2 \end{cases}$. (14)

a) Find A and B so that F is continuous for all numbers in its domain. Briefly explain your answer.

Answer The only discontinuities can occur at 0 and 1. The left- and right-hand limits of F at 0 must agree with F's value at 0. $F(0) = \cos 0 = 1$. $\lim_{x \to 0^{-}} F(x) = \lim_{x \to 0^{-}} \cos x = \cos 0 = 1$. $\lim_{x \to 0^{+}} F(x) = \lim_{x \to 0^{+}} Ax + B = 0$





b) Graph y = F(x) on the axes given for the values of A and B found in $^{-1}$ a).

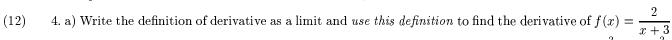
(12)3. A ladder which is 12 feet long has one end on flat ground and the other end on the vertical wall of a building. H is the height from the ground to the point at which the ladder touches the building. D is the distance between the bottom of the ladder and the bottom of the wall. θ is the acute angle between the ladder and the ground.

a) Write H as a function of D: that is, a formula involving D and no other variable. What is the domain of this function?

Answer Pythagoras gives $(12)^2 = H^2 + D^2$ so $H = \sqrt{(12)^2 - D^2}$. The domain is $0 \le D \le 12$.



is the domain of this function? Answer $\sin \theta = \frac{H}{12}$ so $H = 12 \sin \theta$. The domain is $0 \le \theta \le \frac{\pi}{2}$. It would have been a better problem if \tilde{I} had asked for θ as a function of H, I think.



Answer $f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$. When $\Delta x \neq 0$ we see: $\frac{f(x + \Delta x) - f(x)}{\Delta x} = \frac{\frac{2}{x + \Delta x + 3} - \frac{2}{x + 3}}{\Delta x}$. $\frac{\frac{2 \cdot (x + 3) - 2 \cdot (x + \Delta x + 3)}{(x + \Delta x + 3)(x + 3)}}{\Delta x} = \frac{\frac{-2\Delta x}{(x + \Delta x + 3)(x + 3)}}{\Delta x} = \frac{-2}{(x + \Delta x + 3)(x + 3)}$. This last algebraic form allows us to find the limit: $f'(x) = \lim_{\Delta x \to 0} \frac{-2}{(x + \Delta x + 3)(x + 3)} = \frac{-2}{(x + 3)^2}$.

$$\frac{\frac{2\cdot(x+3)-2\cdot(x+\Delta x+3)}{(x+\Delta x+3)(x+3)}}{\triangle x} = \frac{\frac{-2\Delta x}{(x+\Delta x+3)(x+3)}}{\frac{\Delta x}{(x+\Delta x+3)(x+3)}} = \frac{-2}{(x+\Delta x+3)(x+3)}.$$
 This last algebraic form allows us to find the

b) Use your answer to a) to find an equation for the line tangent to the curve $y = \frac{2}{x+3}$ when x=2.

Answer The slope of the tangent line when x=2 is $f'(1)=\frac{-2}{(2+3)^2}=-\frac{2}{25}$ and one point on the tangent line is (1,f(1)) which is $(1,\frac{2}{2+3})=(1,\frac{2}{5})$. An equation for the line is therefore $y-\frac{2}{5}=-\frac{2}{25}(x-2)$, which is a fine answer. It can be converted to slope-intercept form: $y=-\frac{2}{25}x+\frac{14}{25}$ but it doesn't have to be.

(9) 5. Do not algebraically simplify the answers in this problem!

a) If
$$f(x) = -8x^7 + 4x^4 + 24$$
, what is $f'(x)$?
Answer $f'(x) = -8(7x^6) + 4(4x^3) + 0$.

b) If
$$g(x) = \frac{x^2 + 1}{2e^x - 3}$$
, what is $g'(x)$?

Answer
$$g'(x) = \frac{(2x)(2e^x - 3) - (2e^x)(x^2 + 1)}{(2e^x - 3)^2}$$
.

c) If
$$h(x) = \sqrt{3 - \sin x}$$
, what is $h'(x)$?

Answer $h'(x) = \frac{1}{2}(3 - \sin x)^{-(1/2)}(-\cos x).$

(8) 6. k is a differentiable function and the following is known about k and its derivatives.

$$k(1) = 2$$
 $k'(1) = -3$ $k''(1) = 4$

Suppose that $j(x) = k(e^x)$ (this is a composition). Compute j(0) and j'(0) and j''(0). Give the exact answer in each case.

Answer $j(0) = k(e^0) = k(1) = 2$. $j'(x) = k'(e^x)e^x$ by the chain rule, so $j'(0) = k'(e^0)e^0 = k'(1) \cdot 1 = -3 \cdot 1 = -3$. Now use the chain rule and the product rule to get $k''(x) = k''(e^x)(e^x)^2 + k'(e^x)(e^x)$, so $j''(0) = k''(e^0)(e^0)^2 + k'(e^0)(e^0) = k''(1)(1)^2 + k'(1) \cdot 1 = 4 \cdot 1^2 + (-3) \cdot 1 = 1$.

(13) 7. Below is the graph of a differentiable function, Q, whose domain is -2 < x < 6. Use this graph to answer the following questions as accurately as you can.

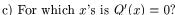
d) Intervals where tangent lines tilt "up"

a) For which x's is Q(x) = 0?

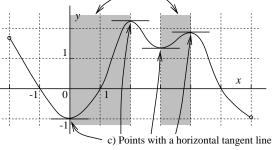
Answer Q(x) = 0 when the graph of Q crosses the x-axis. This seems to occur three times: at x = -1 or 1 or 5.

b) What are the largest intervals on which Q(x) > 0 for all x's in each interval?

Answer The graph must be "above" the x-axis. This seems to occur in the two intervals -2 < x < -1 and 1 < x < 5.



Answer The slope of the tangent line for these x's is 0, so the tangent line must be horizontal. This seems to occur four times: at x = 0 or 2 or 3 or 4.



The graph of y = Q(x)

d) What are the largest intervals on which Q'(x) > 0 for all x's in each interval?

Answer The tangent line must tilt "upwards" (the graph seems to have increasing y's as x increases): this seems to occur in two intervals: 0 < x < 2 and 3 < x < 4.

(12) 8. The line $y = \frac{1}{2}x + 3$ is tangent to the parabola $y = x^2 + B$. Use algebra and calculus to find the exact value of B.

Hint: the two formulas are equal at the tangent point, and the line is tangent to the curve at that point.

Answer If x_0 is the first coordinate of the tangent point, then $\frac{1}{2}x_0 + 3 = (x_0)^2 + B$. But the line must also be the tangent line, and the slope of the line tangent to $y = x^2 + B$ at x_0 is the derivative of $x^2 + B$ at x_0 , which is $2x_0$. The slope of $y = \frac{1}{2}x + 3$ is always $\frac{1}{2}$ so $\frac{1}{2} = 2x_0$. Therefore x_0 is $\frac{1}{4}$ and $\frac{1}{2}x_0 + 3 = (x_0)^2 + B$ becomes $(\frac{1}{2})(\frac{1}{4}) + 3 = (\frac{1}{4})^2 + B$. so $B = 3 + \frac{1}{8} - \frac{1}{16}$ (a fine answer!). If you want, B is $3\frac{1}{16}$ or B is 3.0625(!).

