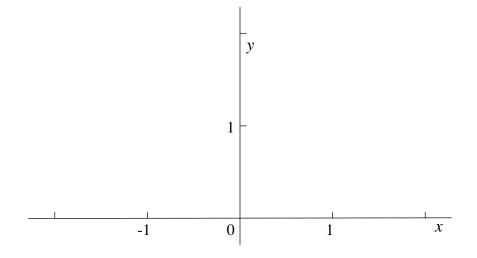
(20) 1. Evaluate the indicated limits exactly. Give evidence to support your answers.

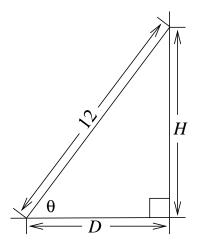
a)
$$\lim_{x \to -2} \frac{x^2 - x - 6}{x + 2}$$

b)
$$\lim_{x \to 0} \frac{\sqrt{3+x} - \sqrt{3}}{x}$$

c)
$$\lim_{x \to 1^{-}} \frac{3x + \ln x}{x}$$


$$d) \lim_{x \to 0^+} \frac{2}{\sin x}$$

(14) 2. Suppose that the function F is described by


$$F(x) = \begin{cases} \cos x & \text{if } -\frac{\pi}{2} \le x \le 0\\ Ax + B & \text{if } 0 < x \le 1\\ x - 1 & \text{if } 1 < x \le 2 \end{cases}.$$

a) Find A and B so that F is continuous for all numbers in its domain. Briefly explain your answer.

b) Graph y = F(x) on the axes given for the values of A and B found in a).

(12) 3. A ladder which is 12 feet long has one end on flat ground and the other end on the vertical wall of a building. H is the height from the ground to the point at which the ladder touches the building. D is the distance between the bottom of the ladder and the bottom of the wall. θ is the acute angle between the ladder and the ground.

a) Write H as a function of D: that is, a formula involving D and no other <u>variable</u>. What is the domain of this function?

b) Write H as a function of θ : that is, a formula involving θ and no other <u>variable</u>. What is the domain of this function?

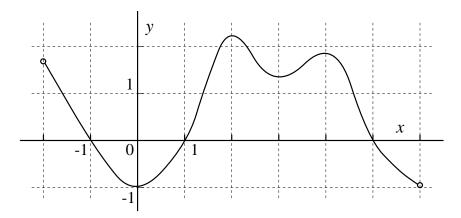
(12) 4. a) Write the definition of derivative as a limit and use this definition to find the derivative of $f(x) = \frac{2}{x+3}$.

b) Use your answer to a) to find an equation for the line tangent to the curve $y = \frac{2}{x+3}$ when x = 2.

(9) 5. Do not algebraically simplify the answers in this problem!

a) If
$$f(x) = -8x^7 + 4x^4 + 24$$
, what is $f'(x)$?

b) If
$$g(x) = \frac{x^2 + 1}{2e^x - 3}$$
, what is $g'(x)$?

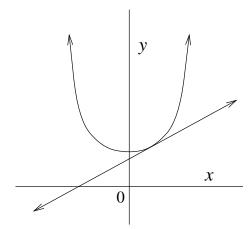

c) If
$$h(x) = \sqrt{3 - \sin x}$$
, what is $h'(x)$?

(8) 6. k is a differentiable function and the following is known about k and its derivatives.

$$k(1) = 2$$
 $k'(1) = -3$ $k''(1) = 4$

Suppose that $j(x) = k(e^x)$ (this is a composition). Compute j(0) and j'(0) and j''(0). Give the exact answer in each case.

(13) 7. Below is the graph of a differentiable function, Q, whose domain is -2 < x < 6. Use this graph to answer the following questions as accurately as you can.


The graph of y = Q(x)

- a) For which x's is Q(x) = 0?
- b) What are the largest intervals on which Q(x) > 0 for all x's in each interval?

- c) For which x's is Q'(x) = 0?
- d) What are the largest intervals on which Q'(x) > 0 for all x's in each interval?

(12) 8. The line $y = \frac{1}{2}x + 3$ is tangent to the parabola $y = x^2 + B$. Use algebra and calculus to find the exact value of B.

Hint: the two formulas are equal at the tangent point, and the line is tangent to the curve at that point.

Exam 1 for Math 135

Sections 1, 2, and 4 October 12, 1998

NAME ($please \ print$):	
(1 1 /	
SIGNATURE:	
SECTION #:_	

Do all problems, in any order.

Show all your work. Full credit may not be given for an answer alone. You may use <u>one</u> sheet of notes and any standard calculator without a QWERTY keypad on this exam or symbolic manipulation capability.

You may use no other materials.

Problem Number	Possible Points	Points Earned:
1	20	20212001
2	14	
3	12	
4	12	
5	9	
6	8	
7	13	
8	12	
Total Points Earned:		