Sample! Your test will have 6 problems in 15 minutes. Sample! Math 151:4,5,6 9/25/2006 Section _____ Name . First Computational Test (Limits) SHOW DETAILS (algebra, limit laws) in the space next to each problem. For the experts: do **NOT** use l'Hospital's rule. HERE ARE EXAMPLES OF ACCEPTABLE SUPPORTING ANSWERS. OTHER ANSWERS MAY ALSO EARN FULL CREDIT. 1. $\lim_{x \to 1} \frac{x^2(x-3)}{2x+3}$ Since $2(1) + 3 \neq 0$, the function $\frac{x^2(x-3)}{2x+3}$ is continuous at 1, and therefore the limit can be computed by just "plugging in" Answer to 1 $\frac{-2/5}{}$ 2. $\lim_{x \to 2^{-}} \frac{|3x - 6|}{x - 2}$ then x < 2. Then 3x < 6 so 3x - 6 < 0. Therefore |3x - 6| = -(3x - 6) and $\frac{|3x-6|}{x-2} = -\left(\frac{3x-6}{x-2}\right) = -3.$ 3. $\lim_{x\to\infty} \frac{6x-5x^3}{2x^3+9}$ We divide the top and bottom by x^3 so that $\frac{6x-5x^3}{2x^3+9} = \frac{\frac{6}{x^2}-5}{2+\frac{9}{3}}$. Now observe that $\frac{6}{x^2}$ and $\frac{9}{x^3}$ both surely $\to 0$ as $x \to \infty$. Answer to 3 $\frac{-5/2}{}$ 4. $\lim_{x \to 3^+} \frac{x(x-3)}{\sqrt{x} - \sqrt{3}}$ Multiply top and bottom by $\sqrt{x} + \sqrt{3}$, and recognize that $(\sqrt{x} - \sqrt{3})(\sqrt{x} + \sqrt{3}) = x - 3$. That is: $\frac{x(x-3)}{\sqrt{x} - \sqrt{3}} = \frac{(x(x-3))(\sqrt{x} + \sqrt{3})}{(\sqrt{x} - \sqrt{3})(\sqrt{x} + \sqrt{3})} = \frac{(x(x-3))(\sqrt{x} + \sqrt{3})}{x-3} = x(\sqrt{x} + \sqrt{3})$ Of course, you could also just use $(\sqrt{x} - \sqrt{3})(\sqrt{x} + \sqrt{3}) = x - 3$ to make $\frac{x(x-3)}{\sqrt{x} - \sqrt{3}} =$ $\frac{x(\sqrt{x}-\sqrt{3})(\sqrt{x}+\sqrt{3})}{\sqrt{x}-\sqrt{3}} = x(\sqrt{x}+\sqrt{3}) \text{ etc.}^*$ Answer to 4 $\underline{\qquad 6\sqrt{3}\qquad}$ OVER

^{*} There is more than one way to flense a feline.

5.
$$\lim_{x \to +\infty} \sqrt{x^2 - x - 3} - x$$

$$\sqrt{x^2 - x - 3} - x = \frac{\left(\sqrt{x^2 - x - 3} - x\right)\left(\sqrt{x^2 - x - 3} + x\right)}{\left(\sqrt{x^2 - x - 3} + x\right)} = \frac{\left(x^2 - x - 3\right) - x^2}{\left(\sqrt{x^2 - x - 3} + x\right)} = \frac{\left(x^2 - x - 3\right) - x^2}{\left(\sqrt{x^2 - x - 3} + x\right)} = \frac{\left(x^2 - x - 3\right) - x^2}{\left(\sqrt{x^2 - x - 3} + x\right)} = \frac{\left(x^2 - x - 3\right) - x^2}{\left(\sqrt{x^2 - x - 3} + x\right)} = \frac{\left(x^2 - x - 3\right) - x^2}{\left(\sqrt{x^2 - x - 3} + x\right)} = \frac{\left(x^2 - x - 3\right) - x^2}{\left(\sqrt{x^2 - x - 3} + x\right)} = \frac{\left(x^2 - x - 3\right) - x^2}{\left(\sqrt{x^2 - x - 3} + x\right)} = \frac{\left(x^2 - x - 3\right) - x^2}{\left(\sqrt{x^2 - x - 3} + x\right)} = \frac{\left(x^2 - x - 3\right) - x^2}{\left(\sqrt{x^2 - x - 3} + x\right)} = \frac{\left(x^2 - x - 3\right) - x^2}{\left(\sqrt{x^2 - x - 3} + x\right)} = \frac{\left(x^2 - x - 3\right) - x^2}{\left(\sqrt{x^2 - x - 3} + x\right)} = \frac{\left(x^2 - x - 3\right) - x^2}{\left(\sqrt{x^2 - x - 3} + x\right)} = \frac{\left(x^2 - x - 3\right) - x^2}{\left(\sqrt{x^2 - x - 3} + x\right)} = \frac{\left(x^2 - x - 3\right) - x^2}{\left(\sqrt{x^2 - x - 3} + x\right)} = \frac{\left(x^2 - x - 3\right) - x^2}{\left(\sqrt{x^2 - x - 3} + x\right)} = \frac{\left(x^2 - x - 3\right) - x^2}{\left(\sqrt{x^2 - x - 3} + x\right)} = \frac{\left(x^2 - x - 3\right) - x^2}{\left(\sqrt{x^2 - x - 3} + x\right)} = \frac{\left(x^2 - x - 3\right) - x^2}{\left(\sqrt{x^2 - x - 3} + x\right)} = \frac{\left(x^2 - x - 3\right) - x^2}{\left(\sqrt{x^2 - x - 3} + x\right)} = \frac{\left(x^2 - x - 3\right) - x^2}{\left(\sqrt{x^2 - x - 3} + x\right)} = \frac{\left(x^2 - x - 3\right) - x^2}{\left(\sqrt{x^2 - x - 3} + x\right)} = \frac{\left(x^2 - x - 3\right) - x^2}{\left(\sqrt{x^2 - x - 3} + x\right)} = \frac{\left(x^2 - x - 3\right) - x^2}{\left(\sqrt{x^2 - x - 3} + x\right)} = \frac{\left(x^2 - x - 3\right) - x^2}{\left(\sqrt{x^2 - x - 3} + x\right)} = \frac{\left(x^2 - x - 3\right) - x^2}{\left(\sqrt{x^2 - x - 3} + x\right)} = \frac{\left(x^2 - x - 3\right) - x^2}{\left(\sqrt{x^2 - x - 3} + x\right)} = \frac{\left(x^2 - x - 3\right) - x^2}{\left(\sqrt{x^2 - x - 3} + x\right)} = \frac{\left(x^2 - x - 3\right) - x^2}{\left(\sqrt{x^2 - x - 3} + x\right)} = \frac{\left(x^2 - x - 3\right) - x^2}{\left(\sqrt{x^2 - x - 3} + x\right)} = \frac{\left(x^2 - x - 3\right) - x^2}{\left(\sqrt{x^2 - x - 3} + x\right)} = \frac{\left(x^2 - x - 3\right) - x^2}{\left(\sqrt{x^2 - x - 3} + x\right)} = \frac{\left(x^2 - x - 3\right) - x^2}{\left(\sqrt{x^2 - x - 3} + x\right)} = \frac{\left(x^2 - x - 3\right) - x^2}{\left(\sqrt{x^2 - x - 3} + x\right)} = \frac{\left(x^2 - x - 3\right) - x^2}{\left(\sqrt{x^2 - x - 3} + x\right)} = \frac{\left(x^2 - x - 3\right) - x^2}{\left(\sqrt{x^2 - x - 3} + x\right)} = \frac{\left(x^2 - x - 3\right) - x^2}{\left(\sqrt{x^2 - x - 3} + x\right)} = \frac{\left(x^2 - x - 3\right) - x^2}{\left(\sqrt{x^2 - x - 3} + x\right)} = \frac{\left(x^2 - x - 3\right) - x^2}{\left(\sqrt{x^2 - x - 3} + x\right)} = \frac{\left(x^2 - x$$

$$\frac{-x-3}{\left(\sqrt{x^2-x-3}+x\right)} = \frac{-x-3}{x\left(\sqrt{1-\frac{1}{x}-\frac{3}{x^2}}+1\right)} = \frac{-1-\frac{3}{x}}{\sqrt{1-\frac{1}{x}-\frac{3}{x^2}}+1} \text{ because since } x>0 \text{ as}$$

 $x \to +\infty$ we know $\sqrt{x^2} = x$. Then I divided by x on the top and the bottom, and used $\frac{1}{x} \to 0$ and $\frac{3}{x^2} \to 0$ as $x \to \infty$.

Answer to 5 $\frac{-1/2}{}$

6.
$$\lim_{x \to -1^+} \frac{x(x-2)}{x+1}$$

As $x \to -1^+$, x > -1 so that x+1>0 and x+1 is a SMALL POSITIVE number. Also as $x \to -1^+$, $x(x-2) \to -1(-1-2)=3$, a positive number. Therefore the quotient in the limit expression is $\approx \frac{3}{\text{SMALL POSITIVE}}$ and this gives the answer shown.

Answer to 6 $_$

7.
$$\lim_{x \to -\infty} \frac{\sqrt{5x^2 - 9}}{2 - 5x}$$

When
$$x < 0$$
, $\sqrt{x^2} = -x$. So as $x \to -\infty$, $\sqrt{5x^2 - 9} = \sqrt{x^2 \left(5 - \frac{9}{x^2}\right)} = -x\sqrt{5 - \frac{9}{x^2}}$ and

therefore
$$\frac{\sqrt{5x^2-9}}{2-5x} = \frac{-x\sqrt{5-\frac{9}{x^2}}}{x\left(\frac{2}{x}-5\right)} = -\frac{\sqrt{5-\frac{9}{x^2}}}{\frac{2}{x}-5}$$
. Again, $\frac{9}{x^2} \to 0$ and $\frac{2}{x} \to 0$ as $x \to -\infty$, and we get the answer shown.

Answer to 7 $\frac{1/\sqrt{5}}{}$

8.
$$\lim_{x\to 0} \frac{(x-1)^3+1}{x}$$

"Expand"
$$(x-1)^3 = x^3 - 3x^2 + 3x - 1$$
 so that $\frac{(x-1)^3 + 1}{x} = \frac{x^3 - 3x^2 + 3x - 1 + 1}{x} = \frac{x^3 - 3x^2 + 3x}{x} = x^2 - 3x + 3$. As $x \to 0$, this $\to 3$

Answer to 8 _____3