Name _____

Section _____

NO CALCULATORS OR NOTES ARE ALLOWED.

1. Suppose $f(x) = x(x-2)^3$.

a) (2 points) The derivative of f, f'(x), is ______.

b) (2 points) The second derivative of f, f''(x), is ______.

c) (2 points) The second derivative of f is 0 at x =____ and x =____.

2. In this problem, f is a differentiable function and f'(x) = 0 only at x = 2 and x = 4.

a) (3 points) Use the axes to the right to draw a graph of f on the interval [1,5] where the maximum value of f on that interval occurs at x=1 and the minimum value of f on that interval occurs at x=5. Also f(1)=4 and f(5)=1.

b) (3 points) Use the axes to the right to draw a graph of f on the interval [1,5] where the maximum value of f on that interval occurs at x=2 and the minimum value of f on that interval occurs at x=4. Also f(2)=4 and f(4)=1.

3. (3 points) If f(1) = 3 and f'(1) = 7, then f(.96) is approximately ______ (Do *not* simplify your numerical answer!)

4. (8 points) Find the area of the rectangle of largest area which has one side on the x-axis and is "under" the graph $y = 4 - x^2$, as shown to the right. (Do not simplify your numerical answer!)

The area of the rectangle of largest area is ______.

5. (7 points) The following is known about f(x):

- $f''(x) = 5x + 3\cos x$ f'(0) = 7 $f(\pi) = -2$

Find f(x). Do <u>not</u> attempt to "simplify" your answer, except that you must find explicit values of any trig functions.