1. Four containers are each 10 cm tall. Each of them has a volume of 30 cm³ and are each being filled by a liquid at the rate of 5 cm³ per minute. Here is a picture of the containers:

- a) For each of the containers, graph the height, h(t), of the level of the liquid in the containers measured in centimeters as a function of time, t, measured in minutes.
- b) Which of the functions graphed in a) are continuous? Explain your answers.
- c) Which of the functions graphed in a) are differentiable? Explain your answers.
- 2. a) Show from the definition of derivative that
- i) f(x) = x|x| is differentiable at x = 0.
- ii) $g(x) = (1 + |x|)^{1/2}$ is not differentiable at x = 0.

Hint Consider limits from "both sides" separately: $x \to 0^-$ and $x \to 0^+$. Then use the definition of $|\cdot|$ to complete your analysis.

- b) Graph each function carefully near x = 0 and discuss how the graphs appear to confirm the results of a).
- 3. Questions about asymptotic growth "near" ∞ occur naturally when computer scientists analyze algorithms. One seemingly simple problem is sorting. How many comparisons are required to sort a list of n numbers? One reference* gives the following average running times for several sorting algorithms as a function of n:

\mathbf{Name}	Running time
Comparison	$4n^2 + 10n$
Merge exchange	$3.7n(\ln n)^2$
Heapsort	$23.08n \ln n + 0.2n$

Which sorting method would you rather use if, in your application, $10 \le n \le 20$ (e.g., sorting a bridge hand)? Which would you rather use if, in your application, $100 \le n \le 150$ (e.g., sorting grades in a lecture course)? Which would you rather use if $n \approx 10^6$ (e.g., sorting license plate numbers in New Jersey)? What happens to these functions as $n \to \infty$? Later we will be more precise about methods to compare rates of growth.

^{*} Sorting and Searching, volume 3 of The Art of Computer Programming, by Donald Knuth.