Lines: If $(x_1, y_1), (x_2, y_2)$ lie on a line L, the slope of L is $m = \frac{y_2 - y_1}{x_2 - x_1}$ and the equation is $y - y_1 = m(x - x_1)$.

Distance: (x_1, y_1) to (x_2, y_2) : $\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$. Circle, center (a, b), rad. r: $(x - a)^2 + (y - b)^2 = r^2$. Trig: In a right triangle: $\sin \theta = \frac{opp}{hyp} \cos \theta = \frac{adj}{hyp} \tan \theta = \frac{opp}{adj} = \frac{\sin \theta}{\cos \theta} \cot \theta = \frac{1}{\tan \theta} \sec \theta = \frac{1}{\cos \theta} \csc \theta = \frac{1}{\sin \theta}$.

Identities: $\sin^2 x + \cos^2 x = 1$, $1 + \tan^2 x = \sec^2 x$, $\sin(2x) = 2 \sin x \cos x$, $\cos(2x) = \cos^2 x - \sin^2 x$.

Addition: $\sin(x\pm y) = \sin x \cos y \pm \cos x \sin y$ $\cos(x\pm y) = \cos x \cos y \mp \sin x \sin y$ $\pi \approx 3.1416$.

Exponentials and logarithms: a, b, t, u, y > 0, r, v, w, x any real numbers: $a^{v+w} = a^v a^w$, $a^{vw} = (a^v)^w$, $a^{-v} = 1/a^v$, $a^0 = 1$, $(ab)^v = a^v b^v$, $\log_a(t) = \ln(t)/\ln(a)$. $e^x = y$ is equivalent to $x = \ln y$, $e^{\ln y} = y$, $\ln(e^x) = x$. $\ln(tu) = \ln(t) + \ln(u)$, $\ln(u^r) = r \ln(u)$, $\ln(1/u) = -\ln(u)$, $\ln(1) = 0$, $e \approx 2.718$.

Squeeze Theorem: If $f(x) \leq g(x) \leq h(x)$ near x = a and $\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L$, then $\lim_{x \to a} g(x) = L$. Intermediate Value Theorem: If f is continuous on [a,b] and N is any number between f(a) and f(b), there is

Corollary: If f changes sign from a to b, then f(c) = 0 with c between a and b.

 $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}; \quad f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}.$ Definition of the Derivative:

f(x)	f'(x)
c, const.	0
x^r	rx^{r-1}
e^x	e^x
$\ln x$	1/x

a number c in [a, b], such that f(c) = N.

f(x)	f'(x)
a^x	$(\ln a)a^x$
$\log_a(x)$	$1/(\ln(a)\cdot x)$
$\sin x$	$\cos x$
$\cos x$	$-\sin x$

f(x)	f'(x)
$\tan x$	$\sec^2 x$
$\sec x$	$\sec x \tan x$
$\operatorname{ctn} x$	$-\csc^2 x$
$\csc x$	$-\csc x \cot x$

f(x)	f'(x)
$\sin^{-1}(x)$	$1/\sqrt{1-x^2}$
$\tan^{-1}(x)$	$1/(x^2+1)$
$\sec^{-1}(x)$	$1/(x\sqrt{x^2-1})$
$\cos^{-1}(x)$	$-1/\sqrt{1-x^2}$

Rules of Differentiation: $\frac{d}{dx}(cu) = c\frac{du}{dx}$, c a const., or (cf)'(x) = cf'(x). $\frac{d}{dx}(u+v) = \frac{du}{dx} + \frac{dv}{dx}$, or (f+g)'(x) = f'(x) + g'(x). Product Rule: $\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$, or (fg)'(x) = f(x)g'(x) + f'(x)g(x).

Quotient Rule: $\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$, or $(f/g)(x) = (g(x)f'(x) - f(x)g'(x))/(g(x)^2)$.

Chain Rule: If y = f(u) and u = g(x), then $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$, or $(f \circ g)'(x) = f'(g(x))g'(x)$. Replacing x by multiplying by $\frac{du}{dx}$, the chain rule applies to all above formulas. Some examples are: $\frac{d}{dx}(u^r) = ru^{r-1}\frac{du}{dx}$, $\frac{d}{dx}(e^u) = e^u \frac{du}{dx}, \frac{d}{dx}(\ln u) = \frac{1}{u} \frac{du}{dx}, \frac{d}{dx}(\sin u) = \cos u \frac{du}{dx}, \frac{d}{dx}(\cos u) = -\sin u \frac{du}{dx}, \frac{d}{dx}(\tan u) = \sec^2 u \frac{du}{dx}.$ Bodies in Free Fall. The distance above ground level of a body in free fall in the earth's atmosphere is

 $s(t) = s_0 + v_0 t - gt^2/2$, where s_0 is the position at time t = 0, v_0 is the velocity at time t = 0, and g is the acceleration due to gravity with $g = 32 \text{ft/s}^2$ or $g = 9.8 \text{m/s}^2$.

Linear or Tangent Line Approximation (or Linearization) of f(x) at x = a is L(x) = f(a) + f'(a)(x - a).

Newton's Method to approximate a solution r of f(x) = 0. Choose a point x_0 close to r. Calculate the terms $x_0, x_1, x_2, x_3, \ldots$ of the sequence defined recursively by $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$

Rolle's Theorem: Suppose f is a function that is continuous on the closed interval [a, b] and differentiable on the open interval (a, b). If f(a) = f(b) = 0, then f'(c) = 0 for some c in (a, b).

Mean Value Theorem: Suppose f is a function that is continuous on the closed interval [a, b] and differentiable on the open interval (a, b). Then there is a point c in (a, b) such that f(b) - f(a) = f'(c)(b - a).

First Derivative Test: Suppose that f is a differentiable function and f(c) = 0. (a) If f' changes sign from + to – at x = c, a local maximum occurs at x = c. (b) If f' changes sign from – to + at x = c, a local minimum occurs. (c) If f' does not change sign at x = c, neither a local maximum or minimum occurs at x = c.

Second Derivative Test: Suppose that f is a twice differentiable function and f(c) = 0. (a) If f''(c) > 0, a local minimum occurs at x = c. (b) If f''(c) < 0, a local maximum occurs. (c) If f''(c) = 0, the test fails.

L'Hôpital's Rule: If $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{0}{0}$ or $\frac{\pm \infty}{\pm \infty}$, then $\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$. Here a may be a finite number or $\pm \infty$.

Integration or anti-differentiation: $\int f(x) dx = F(x) + C$ means that F'(x) = f(x). Formulas can be found by reversing the differentiation formulas: $\int x^r dx = x^{r+1}/(r+1) + C$, if $r \neq -1$ and $\int x^{-1} dx = \ln |x| + C$.