Practice Examination for First Hour Examination

Mathematics 151, Fall 2007

- 1. Find the domain of both functions and the range of the second function:
 - (a) $f(x) = \sqrt{4+x} + \sqrt{4-x}$ (b) $f(x) = \sqrt{4-x^2}$
- 2. Determine each of the limits:

 - (a) $\lim_{x \to 3} \frac{3x^2 8x 3}{x^2 4x + 3}$ (b) $\lim_{x \to 0} \frac{\sqrt{4 + x} \sqrt{4 x}}{x}$ (c) $\lim_{x \to 0} \frac{1 \cos(2x)}{\sin(x)}$
- 3. Use the definition of the derivative directly to calculate f'(x), where $f(x) = 1/\sqrt{x}$.
- 4. Sketch the graph of $y = f(x) = x^3 + \frac{1}{x}$.
- (a) Determine those points x so that the tangent line to the curve at x is horizontal. Give exact values, not numerical approximations.
- (b) Find the equation of the tangent line to the curve at the point x=1 and draw the tangent line on the earlier graph.
- 5. Calculate the derivative of each function f:
- (a) $f(x) = \sqrt{x^4 + 4x + 4}$ (b) $f(x) = x^2 \sin^3(x^4)$ (c) $f(x) = x^2 e^{-x^3}$
- 6. Find the inverse function g of the function $f(x) = e^x/(e^x + 1)$.
- 7. Suppose that u is a positive real number and a, b, c are real numbers so that:
- $\log_u(5) = a$, $\log_u(27) = b$, $\log_u(32) = c$. What is the numerical value of $u^{2a + (1/3)b (2/5)c}$?
- 8. Suppose that f and g are functions. Assume that f is differentiable and f(1) = 2, f'(1) = 4 and that $g(x) = x^4 - x + 1$. Use this information to calculate:
- (a) (fg)'(1) (b) (f/g)'(1) (c) $(f \circ g)(0)$ (d) $(f \circ g)'(0)$ (e) $(f \circ g)(1)$

- 9. With A and B constants, a function f is defined by: $f(x) = \begin{cases} 1/x + A, & \text{if } x < -1; \\ |x|, & \text{if } -1 \le x \le 1; \\ 1/x + B, & \text{if } 1 < x. \end{cases}$
- (a) Find A and B so that f is continuous everywhere.
- (b) Sketch the graph of y = f(x).
- (c) At which points does f fail to be differentiable? Explain the answer.
- 10. Let $f(x) = 3^x$ and $g(x) = x^3$. Then, $f(3) = 3^3 = g(3)$.
- (a) Use the following table to show that $3^x = x^3$ has another solution and find an interval of length 0.1 in which the solution lies.

x	2.0	2.1	2.2	2.3	2.4	2.5	2.6	2.7	2.8	2.9	3.0
$\overline{3^a}$	9	10.05	11.21	12.51	13.97	15.59	17.4	19.42	21.67	24.19	27
\overline{x}^{ξ}	8	9.26	10.65	12.17	13.82	15.63	17.08	19.68	21.95	24.39	27

- (b) If $f(x) = 2^x$ and $g(x) = x^3$, show that the equation $f(x) = 2^x = x^3 = g(x)$ has at least two
- 11. An arrow is shot straight up from ground level and stays in the air for 6 seconds.
- (a) What is the initial velocity of the arrow?
- (b) How high does the arrow go?
- 12. Let f be the function defined for all x by $f(x) = 2\sin x + \sin^2 x$.
- (a) Find f'(x).
- (b) Find the equation of the tangent line of y = f(x) at $x = \pi$.
- (c) Find all values of x for which the tangent line of y = f(x) is horizontal.

- 13. Find all points (a, b) on the parabola $y = x^2 x$ so that the tangent line to the parabola at the point (a, b) contains the point (2, 1).
- 14. Below are the graphs of two functions f and g. One of the functions is the derivative of the other. Determine which is the original function and which is its derivative, explaining your reasons.

15. If $f(x) = e^{2x^2}$, find the second derivative, f'', of f.