1. Four containers are each 10 cm tall. Each of them has a volume of 30 cm³ and each is being filled by a liquid at the rate of 5 cm³ per minute. Here is a picture of the containers:

- a) For each of the containers, graph the height, h(t), of the level of the liquid in the containers measured in centimeters as a function of time, t, measured in minutes.
- b) Which of the functions graphed in a) are continuous? Explain your answers.
- c) Which of the functions graphed in a) are differentiable? Explain your answers.
- 2. Values of a twice differentiable function, f, and its first and second derivatives are in the table to the right. Use this information to answer the following questions as well as you can.

x	f(x)	f'(x)	f''(x)
1	2	0	2
2	3	6	5
3	7	3	-4
4	2	5	7

- a) If $g(x) = (f(x))^2$, compute g(2), g'(2), and g''(2).
- b) If $h(x) = f(x^2)$, compute h(2), h'(2), and h''(2).
- c) If k(x) = f(f(x)), compute k(2), k'(2), and k''(2).
- 3. An unidentified object moves along the s-axis, with displacement s = s(t) (meters), velocity v = v(t) (m/sec) and acceleration a = a(t) (m/sec²). It so happens that the velocity and displacement are related by the equation $v = \sqrt{8s + 16}$. Moreover, at the instant t = 0, the object is observed at s = 6.
- a) Show that a is constant, and find its value.
- b) Graph v as a function of s.
- c) Graph v as a function of t.

One problem will be selected for a writeup to be handed in at the next recitation meeting. Please see Professor Greenfield's Math 151 webpage to learn which problem to hand in.