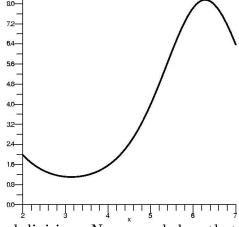
- 1. Determine how large n has to be in order to approximate the integral $\int_0^1 \cos(x^2) dx$, using the Midpoint Rule, with error at most 10^{-6} . Then use this value of n to calculate the integral to this accuracy.
- 2. Suppose f is defined by $f(x) = 3e^{\cos x}$. Maple produced graphs of f and its first four derivatives on the interval [2,7] (be careful when examining the derivative graphs look carefully at the vertical scales!). The graph of f is to the right, and the graphs of the first four derivatives of f are on the back of this page. You should assume that the graphs are correct for this problem.

Suppose I is the value of $\int_{2}^{7} f(x) dx$.



- a) Use the graph of f alone to estimate I.
- b) Use the information in the graphs to tell how many subdivisions N are needed so that the Trapezoid Rule approximation T_N will approximate I with error $< 10^{-5}$.
- c) Use the information in the graphs to tell how many subdivisions N are needed so that the Simpson's Rule approximation S_N will approximate I with error $< 10^{-5}$.
- 3. The only information known about a function T and its derivatives is contained in this table:
- a) Compute $\int_2^3 T'(x) dx$.

b) Compute	$\int_2^3 T''(x) dx.$
------------	------------------------

c) Compute $\int_2^3 x dx$.

\boldsymbol{x}	T(x)	T'(x)	T''(x)
1	2	-2	2
2	3	6	5
3	7	4	-4
4	2	5	7

- d) Compute $\int_2^3 x T''(x) dx$. Don't look at b) and c)! Integrate by parts.
- e) Compute $\int_{2}^{3} x^{2} T'''(x) dx$. And again and again.
- 4. Consider the function $f(x) = e^x \sin(Nx)$ on the interval [0,1] where N is a positive integer.
- a) With a sketch or otherwise, describe the graph of this function when N = 5, N = 10, and N = 100.
- b) Compute $\int_0^1 f(x) dx$. Evaluate this integral when N = 5, N = 10, and N = 100.
- c) What happens to the graph and to the value of the integral as $N \to \infty$? Does the graph confirm the limiting behavior of the integral's value?

One problem will be selected for a writeup to be handed in at the next recitation meeting. Please see Professor Greenfield's Math 152 webpage to learn which problem to hand in.

