(14) 1. Use the method of partial fractions to verify that

$$\int_0^1 \frac{1}{(x+1)(x^2+1)} \, dx = \frac{1}{4} \ln 2 + \frac{1}{8} \pi$$

- (16) 2. a) The base of a solid is the region bounded by the parabola $y = x^2$ and the line y = 4. Cross-sections of the solid by planes perpendicular to the x-axis are squares. Find the volume of the solid.
 - b) The base of a solid is the region bounded by the parabola $y = x^2$ and the line y = 4. Cross-sections of the solid by planes perpendicular to the y-axis are squares. Find the volume of the solid.
- (12) 3. Use integration by parts followed by a substitution (or a substitution followed by integration by parts) to verify that

$$\int_0^1 e^{\sqrt{x}} dx = 2$$

- (16) 4. Suppose \mathcal{R} is the region in the first quadrant bounded by the two curves $y = 4e^{-2x}$ and $y = 4e^{-3x}$.
 - a) Sketch that part of the region between x = 0 and x = 10 on the axes given.

- b) Compute the area of the whole region \mathcal{R} (out to ∞) if it is finite.
- (16) 5. Suppose S is the three-sided region in the first quadrant bounded by the y-axis and the two curves $y = \tan x$ and $y = \sec x$.

- a) Sketch that part of the region between y=0 and y=5 on the axes given.
- b) Compute the area of the whole region S (up to ∞) if it is finite.

(12) 6. a) Suppose m and n are positive integers. Find a reduction formula for

$$\int x^m \left(\ln x\right)^n dx$$

(Here the object is to reduce n, since if we can push n to 0 we'll just have a polynomial to integrate, which is easy.)

b) Use the formula obtained in a) to compute

$$\int x^{20} \left(\ln x\right)^2 dx$$

(14) 7. This problem analyzes the computation needed to estimate the definite integral

$$\int_0^1 \frac{1}{9} \sin\left(x^3\right) dx$$

a) Find n (the number of subdivisions) so that the Trapezoidal Rule estimate will be within 10^{-6} of the true value of the definite integral. (You may use the error bound $\frac{K(b-a)^3}{12n^2}$ where K is an overestimate of the magnitude of the second derivative.)

DO NOT COMPUTE THE TRAPEZOIDAL RULE ESTIMATE.

b) Find n (the number of subdivisions) so that the Simpson's Rule estimate will be within 10^{-6} of the true value of the definite integral. (You may use the error bound $\frac{J(b-a)^5}{180n^4}$ where J is an overestimate of the magnitude of the fourth derivative.)

DO NOT COMPUTE THE SIMPSON'S RULE ESTIMATE.

EXAM 1 for MATH 192:03 October 10, 1996

NAME (please print):	
,	
SIGNATURE:	

Do all problems, in any order.

Show all your work. Full credit may not be given for an answer alone.

You may use <u>one</u> sheet of notes and any standard calculator without a QWERTY keypad on this exam. You may use <u>no</u> other materials.

Problem Number	Possible Points	Points Earned:
1	14	
2	16	
3	12	
4	16	
5	16	
6	12	
7	14	
Total Points Earned:		