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I want to deduce a form of the Fundamental Theorem of Calculus (FTC) from the
Mean Value Theorem (MVT) for several reasons.

• To use the MVT, and not exhibit it as an isolated curiosity. The latter is its fate in
many calculus courses. The MVT is one of the central observations of calculus, and
it and its immediate consequences are important in many applications.

• I want to review the FTC, a wonderful and unexpected connection between limits
of sums and limits of slopes. Students and others who use calculus can easily forget
the power of the FTC. Confusion of definitions and results occurs (is the integral the
difference in values of two antiderivatives or is it some complicated idea involving dis-
sections of areas into slim rectangles?), often encouraged by a choice of nomenclature
(indefinite integral versus definite integral) which in my opinion is rather confusing..

• The discussion below gives a numerical estimate of the difference between certain Rie-
mann sums and their limits. One elementary numerical technique for approximating
definite integrals is verified, and (in principal!) given enough time and computer help,
many definite integrals could be approximated with a given accuracy. Many functions
are introduced as values of definite integrals and the computational implications of
such definitions should be appreciated.

Here’s a statement of the MVT:

Mean Value Theorem. Suppose F is a function defined and differentiable on the interval
[A, B]. Then there is at least one number C in the interval so that:

F (B) − F (A)

B − A
= F ′(C)

In most texts this is usually followed by a series of obvious examples intended to
reassure the reader. These examples don’t show how from the way the MVT is used in
applications of mathematics. Proving the MVT is not difficult, and is usually accompa-
nied by a nice picture. See section 4.2 of the fifth edition of Stewart’s Calculus (Early
Transcendentals).

Now suppose that f is a differentiable function defined on the unit interval, [0, 1].
First chop up the interval into n equal pieces, where n is supposed to be a very large
integer. The jth subinterval has endpoints

[

j−1

n
, j

n

]

. You can check this assertion, as I
always do, by looking at the extreme values of j: the first subinterval, where j = 1, has
endpoints

[

0, 1

n

]

because j − 1 = 0, and the last subinterval, where j = n, has endpoints
[

n−1

n
, 1

]

because n
n

= 1.
Apply the MVT in each subinterval. So in the jth such subinterval, we know that

there is at least one number cj so that

f( j

n
) − f( j−1

n
)

1

n

= f ′(cj)

The B − A in the bottom of the right-hand side has become 1

n
, the length of the subinterval.
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We don’t know very much about the cj in the above equation. Its existence is guaran-
teed by the MVT, but all we know is that it is somewhere in the jth subinterval. What if
we wanted to “change” cj? What if we wanted to write f ′(dj) in the equation, where dj is
some number in the same subinterval, but a number which we specify or pick or choose or
whatever. The equation need not be true then. If it were still true, we’d either have been
very lucky or we’d have a constant function for f ′, which wouldn’t be terribly interesting!
So what sort of error could we commit if we changed f ′(cj) to f ′(dj)? Here is a central
theme of a large chunk of mathematics: since what we’d like to do is not true precisely,
can we estimate much they fail to be true? We want to “control”

f ′(cj) − f ′(dj)

Now some inspiration is necessary. We can control or estimate this by applying the
MVT to the function f ′ on the interval [cj , dj]. Since f ′′ is the derivative of f ′ we know:

f ′(cj) − f ′(dj)

cj − dj

= f ′′(ej)

But multiply and add to get rid of both the division sign and the subtraction sign (always
good ideas!). The equation becomes:

f ′(cj) = f ′(dj) + f ′′(ej) · (cj − dj)

How can we estimate the second term on the right-hand side of this equation? I’ll
be interested in the magnitude of the error so I’ll estimate the sizes (with no signs – the
absolute values) of everything.

We know that |cj − dj | must be less than 1

n
, because they are both in the same

subinterval of length 1

n
. Also suppose I know a number M2 which is an overestimate of

the function |f ′′(x)| can be on the whole interval [0, 1]. I get M2 is any way. In practice
this is not a problem and I only need an overestimate, not an exact value. You’ll see why.

So I know that

f ′(cj) = f ′(dj) + FUZZ

where

|FUZZ | ≤ M2 ·

(

1

n

)

Take this and replace the f ′(cj) in the equation on the top of this page:

f
(

j

n

)

− f
(

j−1

n

)

1

n

= f ′(dj) + FUZZ

Get rid of the quotient by multiplying. The equation becomes:

f

(

j

n

)

− f

(

j − 1

n

)

= f ′(dj)

(

1

n

)

+ NEW FUZZ
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where

|NEW FUZZ | ≤ M2 ·

(

1

n2

)

since
(

1

n

)

·
(

1

n

)

= 1

n2 .
There are n equations like that one, one equation for each subinterval. Line them up:

f

(

1

n

)

− f(0) = f ′(dj)

(

1

n

)

+ NEW FUZZ

...

f

(

j

n

)

− f

(

j − 1

n

)

= f ′(dj)

(

1

n

)

+ NEW FUZZ

...

f(1) − f

(

n − 1

n

)

= f ′(dj)

(

1

n

)

+ NEW FUZZ

I am not asserting that the various NEW FUZZ terms are the same. Now let’s
add these equations. The left-hand sides will collapse or “telescope” because of the sign
patterns. On the right-hand sides there will be a sum of n NEW FUZZ’s. And if we
assume the worst (which we should if we’re trying to do an honest error analysis), the
errors might all reinforce. But how big can the resulting error be? Each piece of the error
is bounded by M2 ·

(

1

n2

)

, and n of these (now the powers cancel) give us an error bound of

n · M2 ·
(

1

n2

)

= M2 ·
(

1

n

)

. The other “stuff” on the right-hand sides can be written using Σ
notation, the mathematical abbreviation for sums. Appendix E of the text discusses such
notation and Section 5.1 applies this notation to problems similar to those we consider
here.

f(1) − f(0) =
n

∑

j=1

f ′(dj)

(

1

n

)

+ FINAL FUZZ

One more notational change: I’ll write g in place of f ′. Then we get:

f(1) − f(0) =
n

∑

j=1

g(dj)

(

1

n

)

+ FINAL FUZZ

where |FINAL FUZZ | ≤ constant

n
. I’m not particularly interested in the “constant” right

now but we do know where it came from.
What I like very much about this equation is that the dj ’s are not supplied to us by

the MVT, but we get to choose or specify any numbers we like subject to the condition
that they’re inside the appropriate jth subinterval of [0, 1]

The term
∑n

j=1
g(dj)

(

1

n

)

is called a Riemann sum for g on [0, 1]. Such sums arise
in computing areas and volumes. They also occur in the analysis of a wide variety of
“processes” where samples are taken over a chopped-up duration interval, and the samples
are multiplied by the length of the duration subinterval. Think of water flowing down a
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small stream from time t = 0 to time t = 1. Chop up this interval into small subintervals
of duration 4tj. In each little “chunk” of time, make one measurement, g(dj), of water
flow (in gallons per second?). Then

∑n

j=1
g(dj)4tj approximates the total water flow.

What does the boxed equation above declare? Please see the following consequences.

? The Riemann sums for the function g, no matter what the sample points, must tend
to a unique limit as n → ∞. That is, limn→∞

∑n

j=1
g(dj)

(

1

n

)

exists and is always the
same, for any collection of sample points.

? The “rate” at which the sums tend to this limit is measured or bounded by a com-
putable error term for the functions considered here. The bound for the error is at
most of order n−1 (that is, the error is ≤ constant

n
). Other algorithms with faster rates

of convergence might be preferred in practice. The constant here is related to the first
derivative of g, which is how we renamed f ′.

? If we know a function f whose derivative is g then the limit is f(1) − f(0). This is a
wonderful way to compute the limit, and we will investigate some intricate strategies
for discovering such functions (antiderivatives). Searching for such antiderivatives may
be tedious or difficult, and it may even be pointless because we can always compute
accurate approximations.

These observations are most of the Fundamental Theorem of Calculus. You can see
that the FTC has many facets. Many students believe that the FTC is exactly the equation

d

dx

∫ x

a

g(t)dt = g(x)

which is related to what we’ve discussed: the limit of the Riemann sums for g creates a
function which is an antiderivative for g.
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