
640:192:03 How big is a ball? 9/23/2005

I want to compute the volume of the unit ball in R
n, n-dimensional space. The unit

ball will be the collection of points whose distance to the origin is less than or equal to 1.
I should define the terms used in this paragraph before starting the computation.

The computation because it is a significant application of a reduction formula obtained
using integration by parts. It also provides some interesting and almost surely unsuspected
asymptotic information about higher dimensional geometry. A few other interesting intel-
lectual morsels are gained, including some hints about the factorial function.

Learning more strengthens intuition!

• Some formulas to start with •
Definition R

n is the collection of n−tuples of real numbers. A typical point in R
n, P ,

has coordinates (x1, x2, . . . , xn).
Math is made up of definitions and deductions from the definitions, all structured to make sense of
examples given by applications and by past work. It makes a great deal of sense to investigate the
appropriateness of any definition, especially when seeking to link it to ideas already known!

Discussion of the definition R
2 is the Euclidean plane, as described to us by Descartes

and similar thinkers: every point “is” a pair of numbers (a, b). The point can be located by
moving a directed distance a along a first axis (the x−axis) and then moving perpendicular
to that a directed distance b, as indicated below. R

3 is three-dimensional space, and a
point is a triple of numbers, (a, b, c). Such a point can be located using three mutually
perpendicular axes as indicated in the picture below.
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Definition If P = (x1, x2, . . . , xn) and Q = (y1, y2, . . . , yn) are two points in R
n, then the

distance from P to Q is
√

(x1 − y1)2 + (x2 − y2)2 + . . . + (xn − yn)2.
Discussion of the definition Of course if P and Q are points in R

2, say P = (a, b)
and Q = (c, d) respectively, then the distance we’ve known for years between P and

Q is
√

(a − c)2 + (b − d)2. This “is” the distance because the Theorem of Pythagoras

(see the picture below) combined with the observation that
√

(|c − a|)2 + (|b − d|)2 =
√

(c − a)2 + (b − d)2 convince us that it is. It is Euclidean distance.
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If P and Q are points of R
3, with P = (a, b, c) and Q = (d, e, f), then a slightly

more elaborate argument combined with a more complex picture is necessary. Here’s the
picture:

z=c

a

x

b

c

0

z

y

(d,e,c)

S

f-c

Distance

(d,e,f)

(a,b,c)

“Drop” a perpendicular from Q to the plane described by z = c. The perpendicular
intersects the plane in the point whose coordinates at (d, e, c). The distance S in the
diagram is a two-dimensional distance between points (a, b, c) and (d, e, c) given by S =
√

(e − b)2 + (d − a)2. The Theorem of Pythagoras again applies to give us the distance
between P and Q as

√

S2 + (|f − c|)2 =
√

(e − b)2 + (d − a)2 + (f − c)2
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Notice first that we begin to run out of letters for two points after a few dimensions,
so we should call the coordinates x1, x2, . . ., etc. Second, pictures become difficult to draw
(see Edward Abbot’s Flatland for an implicit discussion about how to draw pictures in
higher dimensions).

But these two geometrically reasonable demonstrations are supposed to convince you
that the distance formula above is “correct”: it is intuitive and obvious. It is only one of
several candidates for distance in higher dimensions, but it is the one most often considered.
The computation we are about to do, however, will show that some of the geometric
intuition we have needs to be extended suitably. The intuition isn’t wrong, but it needs
more examples!

The origin, 0, in R
n has coordinates (0, 0, . . . , 0).

Definition The unit ball in R
n is the collection of points whose distance to the origin is

less than or equal to 1. So P = (x1, x2, . . . , xn) is in the ball if x2
1 +x2

2 +x2
3 + . . .+x2

n ≤ 1.

The ball of radius R in n dimensions is defined analogously. Vn,R will denote the
n-dimensional volume of the ball of radius R. If cn is the volume of the unit ball, then
Vn,R will be cnRn because multiplication by R changes n-dimensional volume by a factor
of Rn (which won’t be hard to see from what follows). I want to identify the sequence of
constants whose nth term is cn. Here are some volumes from a textbook:

n Vn,R cn Approx. value

1 2R 2 2.000

2 πR2 π 3.142

3 4
3
πR3 4

3
π 4.189

4 1
2
π2R4 1

2
π2 4.935

5 8
15

π2R5 8
15

π2 5.264

6 1
6
π3R6 1

6
π3 5.168

The entries for n = 2 and n = 3 are well-known. Some explanation might be needed for the
others. The one-dimensional “ball” is the interval [−R, R] whose length (or 1-dimensional
“volume”) is 2R. The entry for dimension 4 was gotten earlier in class, and the entries for
dimensions 5 and 6 were copied from a text. They will be verified below. The pattern of
the entries is almost surely not clear. There are too many coincidences for small n and
we’ll need to be more systematic to discover what is happening.

• Volumes by slicing •
Consider the inequality for the unit ball:

x2
1 + x2

2 + x2
3 + . . . + x2

n ≤ 1

Since the left-hand side is a sum of squares, we see that x2
n must always be less than or

equal to 1. That means xn itself is in the interval [−1, 1]. What do (n − 1)-dimensional
cross-sections obtained by holding xn fixed look like? Since x2

1+x2
2+x2

3+. . .+x2
n−1 ≤ 1−x2

n

in such a slice, we see that the slice is an (n − 1)-dimensional ball centered at the origin,
with radius R =

√

1 − x2
n. Here’s a “picture” of what the situation might look like:
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The (n−1)-dimensional volume of the cross-section is cn−1R
n−1 so the n-dimensional

slice has approximate n-dimensional volume cnRn−1dxn and the total volume (inserting
our formula for R) is

Equation ONE : cn =

∫ xn=+1

xn=−1

cn−1R
n−1 dxn =

∫ xn=+1

xn=−1

cn−1

(√

1 − x2
n

)n−1

dxn

• Computing the integral •
If we make the change of variables (substitution) xn = sin θ then







dxn becomes cos θ dθ
√

1 − x2
n becomes cos θ

xn = 1 becomes θ =
π

2

xn = −1 becomes θ = −π

2

and equation ONE changes to the following equation:

Equation TWO : cn =

(
∫ π/2

−π/2

(cos θ)n dθ

)

cn−1

which we’ll now proceed to use. Note that TWO is valid when n is an integer greater
than 1 and that c1 is 2R. So when n = 2 we get

c2 =

(
∫ π/2

−π/2

(cos θ)2 dθ

)

c1
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so that, since c1 = 2 and since
∫ π/2

−π/2
(cos θ)2 dθ = 1

2
π (using the double angle trick, as

we have done several times in class), we can confirm that c2 = ( 1
2
)π · 2 = π. The next

dimension is also fairly easy. We know that
∫ π/2

−π/2
(cos θ)3 dθ = 4

3
(a direct computation

this integral with the substitution u = sin θ and a trig identity) and we proved that c2 = π.
Therefore, TWO applies and c3 = 4

3
· π = 4

3
π, as expected.

Let’s define In as we did previously by the equation

In =

∫ π/2

−π/2

(cos θ)n dθ

since the integral will be important and referred to many times. Then TWO above
translates to

Equation THREE : cn = In · cn−1

which is valid for n > 1.
But let’s try something a bit more challenging. We can try to compute c5. By

repeatedly using THREE we get the following sequence of equalities:

c5 = I5 · c4 = I5 · I4 · c3 = I5 · I4 · I3 · c2 = I5 · I4 · I3 · I2 · c1

and now we stop. We know that c1 = 2, and “all we need to do” to “compute” c5 is to
learn the value of the various integrals.

• A numerical interlude . . . •
We can and will compute the integrals “exactly”, but we can already get some nu-

merical information which has rather disconcerting implications for the volumes of unit
balls. Either hand computation or a short session with a computing device produces the
following table of three decimal place numerical approximations to In for “low” n’s (repeat:
this is a table of values of integrals!):

n In

1 2.000

2 1.571

3 1.333
4 1.178

5 1.067
6 .982

What can we learn? The numbers displayed are decreasing as n increases. We already
knew that the whole sequence of numbers {In} is a decreasing sequence because most
values of cosine in

[
−π

2
, π

2

]
are between 0 and 1. Therefore the integral will be less than

the area of the box whose base is π long and whose height is 1. But, in fact, the higher the
power, the smaller the value of the function except at those places where cosine is either
1 (x = 0) or 0 (x = π

2
or x = −π

2
). Higher powers make smaller integrals.
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These observations mean that for n ≥ 6, the In’s all will be less than .982, which
means that for large n, many numbers less than .982 will be multiplied to get cn. But
powers of .982 decrease rapidly. Therefore, the sequence of cn’s must go to 0 very quickly.
We can already see that the n-dimensional unit balls have very small volume when n is
large! The strange unit balls are those in the first 5 dimensions, since they are the only
ones whose volumes grow with n. After n = 5, the volume of the balls shrinks quite fast.
Let’s recall what we learned about the In’s a few days ago.

In =
n − 1

n
In−2

Explicit values of In for 5 ≤ n ≤ 8 were given in a previous lecture.

• The volume of unit balls •
We start with the formula we developed for dimension 5:

c5 = I5 · I4 · I3 · I2 · c1

Now let’s replace the In’s by their values:

I5 I4 I3 I2 c1

c5 =

︷ ︸︸ ︷
(

4 · 2
5 · 3

)

2 ·
︷ ︸︸ ︷
(

3 · 1
4 · 2

)

π ·
︷ ︸︸ ︷
(

2

3

)

· 2 ·
︷ ︸︸ ︷
(

1

2

)

π ·
︷︸︸︷

(2) =
8

15
π2

Let’s check dimension 6:

c6 = I6 · I5 · I4 · I3 · I2 · c1

And replace each of the In’s as before:

I6 I5 I4 I3 I2 c1

c6 =

︷ ︸︸ ︷
(

5 · 3 · 1
6 · 4 · 2

)

π ·
︷ ︸︸ ︷
(

4 · 2
5 · 3

)

2 ·
︷ ︸︸ ︷
(

3 · 1
4 · 2

)

π ·
︷ ︸︸ ︷
(

2

3

)

· 2 ·
︷ ︸︸ ︷
(

1

2

)

π ·
︷︸︸︷

(2) =
1

6
π3

So we agree with the textbook answers for dimensions 5 and 6. In addition, if we
examine the structure of the answers, we can see patterns which will clearly persist in
general. Here the phrase “will clearly persist in general” is a substitution for “can be
proved by mathematical induction.” Mathematical induction is a simple proof technique
used to prove statements involving positive integers.

Let’s look at even n first to discover the general formula. In the answer for c6 above,
all of the fractions cancel except for

1

6 · 4 · 2 =
1

(3 · 2 · 1) · (2 · 2 · 2)
=

1

3! · 23
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The π’s and 2’s alternate: there are three of each. Note that 6 = 2 · 3. This suggests the
following formula, which is correct:

If n is even, then cn =
π

n

2

(
n
2

)
!

Odd dimensions seem more complicated. Let’s look at c5 again, and group terms.

c5 =

(
4 · 2
5 · 3

)

2 ·
(

3 · 1
4 · 2

)

π ·
(

2

3

)

· 2 ·
(

1

2

)

π · (2) =

(
2 · 2 · 2
5 · 3 · 1

)

π2 =
1

(
5
2

)
·
(

3
2

)
·
(

1
2

) · π 4

2

My aim here is a simple formula for c5. What’s the bottom of the fraction look like?
(

5
2

)
·
(

3
2

)
·
(

1
2

)
seems almost to be the beginning of a factorial – a collection of numbers

decreasing by 1 and being multiplied. But we would have to consider factorials of half

integers. There is a generally accepted interpolation to non-integer values of the factorial
function. If you’re willing to willing to accept (temporarily) the fact that

(
1
2

)
! =

(
1
2

)
· √π

that is, the factorial of 1
2

is or should be
(

1
2

)
· √π, then “clearly”

(
5
2

)
! =

(
5
2

)
·
(

3
2

)
! =

(
5
2

)
·
(

3
2

)
·
(

1
2

)
! =

(
5
2

)
·
(

3
2

)
·
(

1
2

)
· √π. Multiply the formula for c5 by

√
π on both the top

and bottom:

c5 =
1

(
5
2

)
·
(

3
2

)
·
(

1
2

) · π 4

2 ·
√

π√
π

=
π

5

2

(
5
2

)
!

I must show you how to find factorials of non-integer positive real numbers, and then will
verify the result quoted above at that time. If you’re willing to accept this future result
on factorial interpolation, we get a neat formula, valid in all dimensions:

If n is any positive integer, then cn =
π

n

2

(
n
2

)
!

• A ball in a box •
The box just containing the unit circle in R

2 is the square with corners (1, 1), (−1, 1),
(1,−1), and (−1,−1).

0

(1,-1)

(-1,1) (1,1)

(-1,-1)

A deceptive two-dimensional picture
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The proportion of the box occupied by the ball is π
4
, approximately 78.5%. In R

3, the box
just containing the ball has 8 corners, all those points whose coordinates are either +1 or
−1. The volume of that box is 23 = 8, and the proportion of the box occupied by the unit
ball is

(
4
3
π
)
/8, about 52.4%. But remember that low dimensions are very exceptional in

what we’re doing here. Indeed, they are almost weird!
In dimension n, the box just containing the unit ball has 2n corners (all the points

whose n coordinates are either +1 or −1), and every side has length 2. So the n-dimensional
volume of this box is 2n. The volume of the ball is given by the formula above. The top of
the ball formula is π

n

2 which is (
√

π)
n
, approximately (1.772)n. Therefore the top grows

more slowly than 2n all by itself. But the factorial “downstairs” in the ball formula makes
the proportion of the box occupied by the ball get small very quickly.

A example computed with the help of Maple may illustrate this more concretely.
The volume of the 56-dimensional ball is reported to be approximately 2.729 · 10−16.
The 56-dimensional box just enclosing this ball has 56-dimensional volume 256, which
is approximately 7.206 · 1016. The quotient of the volume of the ball divided by the
volume of the box is approximately 3.788 · 10−33, a really tiny number! What’s happening
“geometrically” and how can we hope to understand it? Here are some suggestions. A
typical “corner” of the box is a point with coordinates (±1,±1, . . . ,±1). The distance
from the origin to this corner is

√

(±1)2 + (±1)2 + . . . + (±1)2 =
√

56 > 7 (since the
coordinates of a point are a 56-tuple). The corners are very far from the origin, more
than 7 times the radius of the unit ball, while the ball stays very close since points in
the ball have distance ≤ 1 to the origin. Not only are the corners of the box far away,
but there are many of them (256, in fact). So our low dimensional intuition has not seen
enough examples. More directly: dimensions 2 and 3 are exceptional. Below is a poetic
picture, an “impression”, of part of what the ball in the box might look like if we had
better perception. I tried to show only one corner and the ball. Of course, in the picture
the ball is much too big and the corner is much too close!

(1,1,...,1)

0

A vision of higher dimensional truth (?)

As I mentioned in class, I first saw these computations significantly used in an electrical
engineering text. Let me give a a brief and much simplified version of the discussion I read.
The question of how to analyze “random” strings of signals was being explored. Each signal
had “strength” between −1 and +1. One possible measure of the total strength of an n
long string of signals was the square root of the sum of the squares of the strengths – our
distance to the origin. In this context, a signal string of length 56 doesn’t seem excessive
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at all to me! The analysis I described above was done in just a few lines of the text (many
implied uses of “clearly” were needed!) and the notion of total signal strength gotten
from Euclidean distance (the square root of a sum of squares) was then abandoned. An
alternative measure of strength derived by considering boxes instead of balls was proposed
and used: measure the strength of the signal by taking the maximum of the absolute values

of the individual signals. In our language, the recommendation was to discard
√
∑n

j=1(xj)2

as a measure of the strength of the entire signal and to use max{|xj |, 1 ≤ j ≤ n} instead.
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