Just a few formulas for the final exam in Math 251, fall 2008

Curvature κ is all of the following:

$$\left\| \frac{d\mathbf{T}}{ds} \right\| = \frac{\|\mathbf{T}'(t)\|}{\|\mathbf{r}'(t)\|} = \frac{\|\mathbf{r}'(t) \times \mathbf{r}''(t)\|}{\|\mathbf{r}'(t)\|^3} \stackrel{\text{2 dim}}{=} \frac{|y''(t)x'(t) - x''(t)y'(t)|}{(x'(t)^2 + y'(t)^2)^{3/2}} \stackrel{\text{y=}f(x)}{=} \frac{|f''(x)|}{(1 + (f'(x))^2)^{3/2}}$$

Second derivative test for differentiable functions in \mathbb{R}^2

Suppose $f_x(a,b) = 0$ and $f_y(a,b) = 0$. Let $H = H(a,b) = f_{xx}(a,b)f_{yy}(a,b) - [f_{xy}(a,b)]^2$.

- a) If H > 0 and $f_{xx}(a, b) > 0$, then f(a, b) is a local minimum.
- b) If H > 0 and $f_{xx}(a, b) < 0$, then f(a, b) is a local maximum.
- c) If H < 0, then f(a, b) is not a local maximum or minimum (f has a saddle point). If H = 0, no information.

Polar coordinates $dA = r dr d\theta$

Spherical coordinates $dV = \rho^2 \sin \phi \ d\rho \ d\theta \ d\phi$

Change of variables in 2 dimensions

$$\int \int_{R_{xy}} f(x,y) \ dA = \int \int_{\tilde{R}_{uv}} f(x(u,v),y(u,v)) \left| \frac{\partial(x,y)}{\partial(u,v)} \right| du \ dv \text{ where the Jacobian, } \frac{\partial(x,y)}{\partial(u,v)}$$
 is $\det \left(\frac{\partial x}{\partial u} \ \frac{\partial x}{\partial v} \ \frac{\partial y}{\partial u} \ \frac{\partial y}{\partial v} \right).$

Green's Theorem

$$\int_{C} P dx + Q dy = \int \int_{R} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dA$$

If
$$\nabla = \frac{\partial}{\partial x}\mathbf{i} + \frac{\partial}{\partial y}\mathbf{j} + \frac{\partial}{\partial z}\mathbf{k}$$
 and \mathbf{F} is a vector field then $\begin{cases} \operatorname{curl} F = \nabla \times \mathbf{F}, & \text{a vector field.} \\ \operatorname{div} F = \nabla \cdot \mathbf{F}, & \text{a function.} \end{cases}$

Stokes' Theorem

S is a surface with boundary curve C. As you "walk" along C, S is to the left and \mathbb{N} , the surface normal, is up.

$$\left[\iint_{S} (\operatorname{curl} \mathbf{F}) \cdot \mathbf{N} \, dS = \right] \quad \iint_{S} (\nabla \times \mathbf{F}) \cdot d\mathbf{S} = \int_{C} \mathbf{F} \cdot d\mathbf{s} \quad \left[= \int_{C} P \, dx + Q \, dy + R \, dz \right]$$

Divergence Theorem

W is a region in \mathbb{R}^3 with boundary surface S. The boundary S is oriented so its normal vectors point *outward*.

$$\iint_{S} \mathbf{F} \cdot d\mathbf{S} = \iiint_{E} \operatorname{div} F \, dV \quad \left[= \iiint_{E} \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \, dV \right]$$