Just a few formulas for the final exam in Math 251, fall 2008

Curvature « is all of the following:
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Second derivative test for differentiable functions in R?
Suppose fz(a,b) =0 and fy(a,b) =0. Let H = H(a,b) = fyz(a,b)fyy(a,b) — [fxy(a,b)]Q.
a) If H> 0 and f,,(a,b) > 0, then f(a,b) is a local minimum.
b) If H > 0 and f,.(a,b) <0, then f(a,b) is a local maximum.

c) If H <0, then f(a,b) is not a local maximum or minimum (f has a saddle point).

If H =0, no information.

Polar coordinates dA = r dr df
Spherical coordinates dV = p?sin ¢ dp df d¢

Change of variables in 2 dimensions
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Green’s Theorem
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ftv= gi + éj + 2k and F is a vector field then
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du dv where the Jacobian,

curl =V x F, a vector field.
div ' =V - F, a function.

Stokes’ Theorem

S is a surface with boundary curve C. As you “walk” along C', S is to the left and N, the
surface normal, is up.
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Divergence Theorem

W is a region in R with boundary surface S. The boundary S is oriented so its normal

vectors point outward.
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