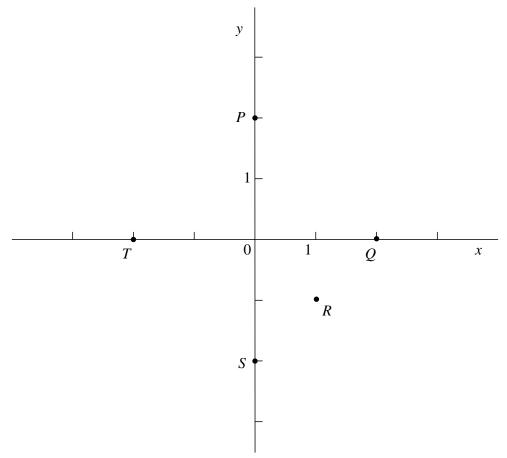
- (20) 1. Find all critical points of each function. Describe (as well as you can) the type of each critical point. Explain your conclusions.
 - a) $f(x,y) = (x^2 + y^2) e^{x-y}$
 - b) $g(x,y) = (y x^2)^{600}$
- (20) 2. Suppose that $F(x, y, z) = y^2 e^{(6x-yz)}$. Note that F(1, 2, 3) = 4.
 - a) Find a unit vector in the direction is the largest directional derivative of F at (1, 2, 3). Find the value of that directional derivative.
 - b) Find an equation for the plane tangent to the surface $y^2 e^{(6x-yz)} = 4$ at the point (1,2,3).
 - c) Find parametric equations for a line normal to the surface $y^2e^{(6x-yz)}=4$ at the point (1,2,3).
- (20) 3. The point p = (-2, 1, 1) satisfies the equation $z^3 + xy^2z + 1 = 0$. Suppose near the point p that z is defined implicitly by the equation as a differentiable function of x and y.
 - a) If x is changed from -2 to -2.03 and y is changed from 1 to 1.04, use linear approximation to describe the approximate change in z.
 - b) What is the value of $\frac{\partial^2 z}{\partial x^2}$ at p?
- (20) 4. Prove Green's Theorem for the region in the plane bounded by the x-axis and the curve $y = 1 x^2$ by explicitly computing both sides of the equality for a "general" P(x, y) dx + Q(x, y) dy (be sure to state what conditions on P and Q are needed) and checking that the two sides are indeed the same.
- (20) 5. Suppose a vector field is defined by $\mathbf{F} = (y^2z)\mathbf{i} + (2xyz)\mathbf{j} + (xy^2 + 4z)\mathbf{k}$.
 - a) Determine whether there is a scalar function P(x, y, z) defined everywhere in space such that $\nabla P = \mathbf{F}$. If there is such a P, find it; if there is not, explain why not.
 - b) Compute the integral $\int_W \mathbf{F} \cdot \mathbf{T} \, ds$, where W is the circular helix whose position vector is given by $\mathbf{R}(t) = (\cos t) \mathbf{i} + (\sin t) \mathbf{j} + t \mathbf{k}$ for $0 \le t \le 2\pi$. Use information gotten from your answer to a) to help if you wish.
- (20) 6. The average value of a function f defined in a region R of \mathbb{R}^3 is $\iiint_R f \, dV$. Compute the average distance to the center of a sphere of radius a.
- (20) 7. Suppose $f(x, y, z) = xy^2z^3$.
 - a) Compute $\int_0^1 \int_0^x \int_0^y f(x, y, z) dz dy dx$.
 - b) Write the integral in a) as a sum of one or more iterated integrals in dx dy dz order. You are *not* asked to integrate your answer, only to set it up.

(20) 8. Sketch the three level curves of the function $W(x,y) = ye^x$ which pass through the points P = (0,2) and Q = (2,0) and R = (1,-1). Label each curve with the appropriate function value. Be sure that your drawing is clear and unambiguous.

Also, sketch on the same axes the vectors of the gradient vector field ∇W at the points P and Q and R and S and T. The point S = (0, -2) and the point T = (-2, 0).



- (20) 9. Suppose $\mathbf{F} = -2xz\mathbf{i} + y^2\mathbf{k}$. Note There is no **j** component in **F**.
 - a) Compute curl **F**.
 - b) Compute the outward unit normal **n** for the sphere $x^2 + y^2 + z^2 = a^2$.
 - c) If R is any region on the sphere $x^2+y^2+z^2=a^2$, verify that $\iint_R (\operatorname{curl} \mathbf{F}) \cdot \mathbf{n} \, dS=0$.
 - d) Suppose C is a simple closed curve on the sphere $x^2 + y^2 + z^2 = a^2$. Show that the value of the line integral $\int_C -2xz \, dx + y^2 \, dz$ is 0.

Comment Please *don't* attempt a direct computation! Use c) and one of the big theorems.

- (20) 10. a) Verify that the improper integral $\int_0^1 x^{-3/2} dx$ does not converge.
 - b) Suppose R is the (roughly) triangular-shaped region in \mathbb{R}^2 defined by $y=x^2, y=0$, and x=1. For which values of a and b does the integral $\iint_R x^a y^b dA$ converge?

Very difficult Final Exam for Math 291, section 1

December 22, 2006

Do all problems, in any order.

Show your work. An answer alone may not receive full credit.

No notes or calculators may be used on this exam.

A page with formulas will be supplied.

Problem Number	Possible Points	$\begin{array}{c} { m Points} \\ { m Earned:} \end{array}$
1	20	
2	20	
3	20	
4	20	
5	20	
6	20	
7	20	
8	20	
9	20	
10	20	
Total Points Earned:		