Sources of the 403:02 final exam problems

These problems are mildly edited from the qualifying exams of the universities indicated.

- **Oklahoma** 1. Let $u(x, y) = x^3 + x 3xy^2$.
 - a) Show that u(x, y) is harmonic on the complex plane.
 - b) Find all harmonic conjugates of u(x, y).
 - c) Find an analytic function f(z) so that Re f=u and find the Taylor series of f(z) about the point 0.
 - **Purdue** 2. Construct a one-to-one analytic map from $Q = \{z : |z| < 1 \text{ and } \text{Im } z > 0\}$ (the upper half of the unit disc) onto the unit disc, $U = \{z : |z| < 1\}$. Show how the boundary of Q is mapped to the boundary of U.
 - **Temple** 3. Use the Residue Theorem to compute $\int_{-\infty}^{\infty} \frac{1}{(x^2 + 2x + 2)^2} dx.$
 - Berkeley 4. Prove that for any fixed complex number ζ , $\frac{1}{2\pi} \int_0^{2\pi} e^{2\zeta \cos \theta} d\theta = \sum_{n=0}^{\infty} \left(\frac{\zeta^n}{n!}\right)^2$.

Hint Use the "dictionary" to convert this into a line integral and then use infinite series.

- **Temple** 5. Let $\mathbb{R}^- = \{x \text{ is real and } x \leq 0\}$. Suppose f(z) is analytic in $\mathbb{C} \setminus R^-$, and $f(x) = x^x$ for real positive x. Find f(i) and f(-i).

 Scoring 10 points for the values, and 10 points for explanation.
- **Temple** 6. Show that if f(z) is analytic at a and $g(z) = \frac{f(z) + af'(a) zf'(a) f(a)}{(z-a)^2}$ then g(z) has a removable singularity at z = a. What value should be given to g(a) so that the extended function is analytic at a?
- **Johns** 7. Find the number of zeros of the function $f(z) = 2z^5 + 8z 1$ in the annulus 1 < |z| < 2. **Hopkins**
- **Missouri** 8. Suppose $|f(z)| \leq K$ on the circumference of a square whose side length is L, and let z_0 be the center of the square. If f(z) is analytic in a domain containing the square, show that $|f'(z_0)| \leq \frac{8K}{\pi L}$.

Hint Use an integral formula.

- **Penn** 9. Prove that if f(z) is an entire function and if there is a positive number M so that **State** Re $f(z) \leq M$ for all z, then f(z) is constant.
- Florida 10. Suppose the *Bernoulli polynomials* are defined by the Taylor expansion $\frac{ze^{wz}}{e^z-1} =$ State $\sum_{k=0}^{\infty} \frac{B_k(w)}{k!} z^k$. Find the first three Bernoulli polynomials, $B_0(w)$, $B_1(w)$, and $B_2(w)$.