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Suppose f is a real function on (—oo,00). We say z is a fixed point of f if

f(z) = .

a) If f is differentiable and f'(t) # 1 for every real t, prove that f has at most
one fixed point.

Proof: Suppose that f satisfies the hypotheses, but, for distinct real numbers
a and b with @ < b, f(a) = a and f(b) = b. Then, by the Mean Value
Theorem, there exists r» € (a,b) such that f'(r) = w = e =,
contradiction. Hence, f has at most one fixed point.

b) Show that the function defined by
ft)y=t+1+e)!

has no fixed point, although 0 < f’(t) < 1 for all real t.

First, f'(t) =1 —e€'(1+¢e')"2. To see that f’(¢) is bounded between 0 and 1,
consider the following implications:

O<el=l<lte=e<(I+e)’=-1<—-€(1+e)?<0
=0<f(t)<1.

If f did have a fixed point, then f(t) =t = (1 +e')~! = 0, which is a
contradiction since the left-hand side is positive for all t.

This shows that boundedness of f’ less than 1 does not guarantee a fixed
point.

c) However, if there is a constant A < 1 such that |f’(¢)| < A for all real ¢, then
a fixed point = of f exists, and x = limx,, where x; is an arbitrary real
number and z,1 = f(z,) for n € N.

Lemma: If, in addition to the above hypotheses, f(¢t) > ¢ for all ¢, then
f(t) < g(t) = At + f(0) for all ¢ > 0. Similarly, if f(¢) < ¢ for all ¢, then
f(t) > h(t) = At + f(0) for all ¢ < 0.

Proof of lemma: Note that f(0) = ¢(0), and that g is a differentiable function
with a constant derivative, namely A. Let y € (0,00) be arbitrary. Then, by



the Mean Value Theorem, there exists € (0,y) such that f'(r) = £ (y);f ©

)
Since f'(r) < ¢'(r) = A, we have f(y);f(o) < g(y);g(O) = f(y) < g(y). Hence,
f(t) < g(t) for all t > 0.

Take an arbitrary z € (0,00). Then, by the Mean Value Theorem, there
is a point s € (—z,0) such that f'(s) = w. As above, we find that
f(o)_zf(_z) < h(o)_zh(_z) = —f(=2) < =h(—2) = h(—2z) < f(—z). Since z
was arbitrarily chosen, h(t) < f(t) for all ¢t < 0.

This is an image of the function f(t) = log(t + 8) + 5, for which f'(#) < 1/8
for t > 0. Clearly, it cannot always be bounded between ¢ and (1/8)t+ f(0).

X
a log(x+8)+5 ---~<-- i
0.125*x+log(8)+5 ~------
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Proof of ¢): Recall that f can have at most one fixed point. Suppose f has
none. Then, for all ¢, f(t) > t or f(t) < t. If it is always the case that
f(t) > t, then by the lemma we can conclude that ¢t < At + f(0) for all
positive ¢; this is a contradiction, since t = At + f(0) at t = ﬁ—ojl. If f(t) <t
for all ¢, we have by the lemma that At + f(0) < ¢ for all negative ¢; again,
this is a contradiction.

To see the following argument more clearly, we define ¢(t) = f(t) —t. We
have assumed that g(t) # 0 for all ¢, and that neither ¢g(t) > 0 or g(t) < 0
can hold for all t. Hence, there exist a and b with a < b such that g(a) > 0
and g(b) < 0. By the Intermediate Value Theorem, there exists r € (a,b)
such that g(r) = 0, contradicting that g(¢) # 0 for all ¢. Hence, there is some
point z such that f(z) = x.

Finally, we show that (z,) converges to x. First, note that |z — 5| =
|f(xz) — f(x1)|. Then, by the Mean Value Theorem, there is some number r
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between z and z; such that |f/(r)| = L=l Aq | £/(r)] < A, |2 — 20| =

T—x1
|f(z) — f(x1)] < Alx — x1]. Suppose th‘at fo‘r some natural number n > 1
that |z — z,1| = |f(x) — f(z,)| < A"z — z1]. Then, applying the Mean
Value Theorem as we did in the case n = 1, we find that |z — x,42| =
|f(2) = f(ani)] < Alz —2p | < A Az — 21| = A" o — 14|, So, for every
n, |z — z,| < A" Yz — z1]. By Bernoulli’s inequality, 0 < 7}13)10 |z — 2| <

lim A" !z — 21| = 0, and therefore z,, — .

d) Here is a picture of the algorithm converging. The path (z1,x2) — (22, x2) —
(9, 23) — (x3,23) — (w3,24) — ... is represented by the zig-zag lines. The
function whose fixed point is being found is —/x 4 2, and I chose x; = 3.
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As an example of how this can be applied, consider the function

3+ 1
3
which has three fixed points. The fixed points «, [, and v satisfy

fz) =

—2<a< -1, 0<p<1, l<y<2
. Suppose that we have a sequence defined as in 22c.

a) If x; < «, then x,, —» —o0 as n — 0.

If z, < a, then x,,,1 = # < «. Hence, z,, € (—o0, «) for all n. It follows

that f'(z,) > f'(a) = a* > 1 for each n. By the Mean Value Theorem,
for each n there exists a point ¢, € (,, ) such that f'(c,) = L9=n)

a—Tnp
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Hence, |a — 21| = [f(a) = f(za)| = f'(ca)la — 2| > a®|a — x| Since
la — x5 > a?|a — 71|, the relation |a — x,| > a*™ Y| — ;| holds for all
n > 2.

Since lim a2~

Yo — 24| = o0, lim | — 2| = co0. Thus, z, — —o0.
n—00 n—0o0

b) If @ < z; <, then x, — 3 as n — oo. [Note: f'(z) = %]

The cases we consider are z; € (a, —1), xy € [-1,-1/2), 1 € [-1/2,1/2],
x1 € (1/2,1], and 7 € (1,7).

Case 1: First, suppose z; € [—1/2,1/2]. Fort € [-1/2,1/2], f'(t) < 1/4 < 1.
Then, |5 — x5 = |f(B) — f(z1)| < (1/4)|8 — x1|. Since x5 is closer to § than
x1, 9 € [—1/2,1/2]. Tt can be shown by an argument similar to the one
given in 22c¢ that z,, — 5.

Case 2: Next, suppose that z; € [-1,-1/2). Since -1 < 2, < —1/2,
1< < (—1/2)F = 0 < L — g, < 7/24 < 1/2. Thus, o5 € [—1/2,1/2),
and it follows from case 1 that z,, — (.

Case 3: It is easy to see that if z,, € (o, —1) then 2,41 < 0, and therefore
Tnr1 ¢ (1/2,7). Thus, x,.1 € [—1,1/2], in which case convergence to [
follows, or z,4+1 € (o, —1).

So, suppose that x,, € (o, —1) for all n. If x; € (o, —1), then a < 21 = a <

z3+1

3
Notice that for ¢t € (a, —1) we have that f'(t) > 1. Consider |a — z,41| =
|f(a) — f(x,)]. By the Mean Value Theorem, there exists ¢, € («, z,) such
that f'(c,) = % Thus, | — 2p41| > | — x| for all n. Therefore,
(x,) is monotonically increasing, and is bounded above by —1. Hence, ()
must converge to some number x € (o, —1). From continuity of f and the
fact that (x,) and (f(x,)) have the same limit, it follows that f(z) = x, so
x is a fixed point. But this is a contradiction, since there is no fixed point
in (a, —1). Hence, the sequence is not bounded above by —1, and therefore
T, — 3.

Case 4: The argument for when x; € (1/2,1] is similar to case 2.

= 9. An inductive argument shows that x, > « for all n.

Case 5: The argument for when x; € (1,+) is similar to case 3.

c) If v < xq, then x, — oo as n — oc.

The result follows from the same argument used in part a).

Here is an image of the fixed point iteration algorithm converging to 5. I chose
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