- (13) 1. Suppose $\{x_n\}$, $\{y_n\}$, and $\{z_n\}$ are real sequences, and that for all positive integers, n, $x_n \leq y_n \leq z_n$. If both $\{x_n\}$ and $\{z_n\}$ converge and have the same limit, L, prove that $\{y_n\}$ converges and its limit is L. Answer Fix $\varepsilon > 0$. Since $\lim_{n \to \infty} x_n = L$ there is $N_x \in \mathbb{N}$ so that if $n \geq N_x$, then $|x_n L| < \varepsilon$. Therefore for such n, $L \varepsilon < x_n < L + \varepsilon$. Similarly, there is $N_z \in \mathbb{N}$ so that if $n \geq N_z$, then $L \varepsilon < z_n < L + \varepsilon$. Let $N = \max(N_x, N_z)$. If $n \geq N$, then $L \varepsilon < x_n \leq y_n \leq z_n < L + \varepsilon$, so that $|y_n L| < \varepsilon$. Thus $\lim_{n \to \infty} y_n = L$.
- (13) 2. Suppose (X,d) is a metric space. If P and Q are connected subsets of X with $P \cap Q \neq \emptyset$, prove that $P \cup Q$ is connected. **Answer** Suppose there is a separation, A and B, of $P \cup Q$. Then $A \cup B = P \cup Q$, $\overline{A} \cap B = \emptyset$, $A \cap \overline{B} = \emptyset$, and neither A nor B is empty. Since $P \cap Q \neq \emptyset$, there is $x \in P \cap Q$ so that $x \in A$ or $x \in B$. We address the first case (the second is similar). Consider $A \cap P$ and $B \cap P$. Since $\overline{A \cap P} \subset \overline{A} \cap P \subset \overline{A}$ and $B \cap P \subset B$ and therefore $(\overline{A \cap P}) \cap (B \cap P) = \emptyset$ (and similarly reversing the roles of A and B). But $x \in A$, so since P is connected, $P \subset A$. Similarly, $Q \subset A$. Therefore $B = \emptyset$ which is a contradiction, so no separation exists, and $P \cup Q$ is connected.
- (15) 3. Suppose (X, d) is a metric space. a) If A and B are subsets of X, prove that $\overline{A \cup B} = \overline{A} \cup \overline{B}$. Answer If $x \in \overline{A}$, then given r > 0, $N_r(x) \cap A \neq \emptyset$. That is, either $x \in A$ or x is a limit point of A. Since $A \subset A \cup B$, if $x \in \overline{A}$, then given r > 0, $N_r(x) \cap (A \cup B) \neq \emptyset$ and thus $x \in \overline{A \cup B}$. The case $x \in \overline{B}$ is similar. Now if $x \in \overline{A \cup B}$, consider $N_r(x) \cap (A \cup B) = (N_r(x) \cap A) \cup (N_r(x) \cap B)$. This is not empty because x is an element of the closure of $A \cup B$. If there is r > 0 so that $N_r(x) \cap A = \emptyset$, there is always $b \in B$ with $b \in N_r(x)$. Also, if 0 < s < r, there must be $b \in B$ with $b \in N_s(x)$ or else $N_s(x) \cap (A \cup B) = \emptyset$. Therefore $x \in \overline{B}$. The situation if $N_r(x) \cap B = \emptyset$ is similar, so either x is in \overline{A} or in \overline{B} .
 - b) Give an example to show that the closure of the union of a *countable* number of subsets of X need not be equal to the union of the closures of each of the sets. **Answer** Take $X = \mathbb{R}$ with the usual metric, and $A_j = \left\{\frac{1}{j}\right\}$ for positive integer j. Here $\overline{A_j} = A_j$ but $0 \in \overline{\bigcup_{j=1}^{\infty} A_j}$. So the union of the closures is not the same as the closure of the union.
 - c) Give an example to show that $\overline{A \cap B}$ and $\overline{A} \cap \overline{B}$ need not be equal. Here A and B are subsets of X. **Answer** Take $X = \mathbb{R}$ with the usual metric. Suppose A = [0,1) and B = [1,2] so that $\overline{A} = [0,1]$ and $\overline{B} = [1,2]$. Therefore $A \cap B = \emptyset$ so the closure is empty, but $\overline{A} \cap \overline{B} = \{1\}$
- (15) 4. Suppose (X,d) is a metric space. a) If A is a subset of X, prove that $\operatorname{diam}(A) = \operatorname{diam}\left(\overline{A}\right)$. Comment $\operatorname{diam}(S) = \sup \left\{d(x,y) \colon x,y \in S\right\}$ if $S \subset X$. Answer Since $A \subset \overline{A}$, the sup for \overline{A} is taken over more real numbers, and therefore $\operatorname{diam}(A) \leq \operatorname{diam}\left(\overline{A}\right)$. If $\operatorname{diam}(A) < \operatorname{diam}\left(\overline{A}\right)$, then there is $\delta > 0$ so that $\operatorname{diam}(A) + \delta < \operatorname{diam}\left(\overline{A}\right)$ and therefore $d(x,y) + \delta < \operatorname{diam}\left(\overline{A}\right)$ for all x and y in A. But the diameter of the closure is a sup, so there must be z and w in \overline{A} so that $d(x,y) + \frac{\delta}{2} < d(z,w)$ for all x and y in A. Since $z \in \overline{A}$ and $w \in \overline{A}$, there are elements \tilde{z} and \tilde{w} in A with $d(z,\tilde{z}) < \frac{\delta}{4}$ and $d(w,\tilde{w}) < \frac{\delta}{4}$. Estimate: $d(z,w) \stackrel{\Delta}{\leq} d(\tilde{z},z) + d(\tilde{z},\tilde{w}) + d(\tilde{w},w) < d(\tilde{z},\tilde{w}) + 2\left(\frac{\delta}{4}\right) = d(\tilde{z},\tilde{w}) + \frac{\delta}{2}$. This contradicts a

previous assertion (with \tilde{z} as x and \tilde{w} as y) so the diameters must be equal. (The text's proof is more economical.)

- b) Give an example of a subset A of X with $\operatorname{diam}(A) \neq \operatorname{diam}(A^{\circ})$ and $A^{\circ} \neq \emptyset$. (A° is the interior of A.) **Answer** Take $X = \mathbb{R}$ with the usual metric. If $A = [0,1] \cup \{2\}$, then $A^{\circ} = (0,1)$, $\operatorname{diam}(A) = 2$, and $\operatorname{diam}(A^{\circ}) = 1$.
- (15) 5. a) Suppose (X, d) is a metric space, K is a compact subset of X, U is an open subset of X, and $K \subset U$. Prove that there is r > 0 so that $\bigcup_{k \in K} N_r(k) \subset U$. Answer Suppose $k \in K$. Since U is open, there is $r_k > 0$ with $N_{2r_k}(k) \subset U$. Then $\{N_{r_k}(k)\}_{k \in K}$ is an open cover of K (with no 2 here!). K is compact so there is a finite subcover, $\{N_{r_{k_j}}(k_j)\}_{1 \leq j \leq n}$. Define $r = \min\{r_{k_j} : 1 \leq j \leq n\}$. s is a positive real number since it is the minimum of a finite set of positive real numbers. If $k \in K$, then there is k_j with $d(k, k_j) < r$ (cover!). But $N_r(k) \subset N_{2r}(k_j)$ (triangle inequality) and $N_{2r}(k_j) \subset N_{2r_{k_j}}(k_j) \subset U$. So we have proved $\bigcup_{k \in K} N_r(k) \subset U$.

Alternative proof Suppose no such r exists. Then for any positive integer n we can find $k_n \in K$ and $v_n \notin U$ with $d(k_n, v_n) < \frac{1}{n}$. Since K is compact, the sequence $\{k_n\}$ has a subsequence which converges to q in K. But $q \in U$ so there's $\delta > 0$ with $N_{\delta}(q) \subset U$. Find n so that $\frac{1}{n} < \frac{\delta}{2}$ and $d(k_n, q) < \frac{\delta}{2}$, possible since q is a subsequential limit of $\{k_n\}$. Then (by $\Delta \leq v_n \in N_{\frac{1}{n}}(k_n) \subset N_{\frac{\delta}{2}}(k_n) \subset N_{\delta}(q) \subset U$. But this contradicts $v_n \notin U$.

- b) Give an example to show that there can be a closed subset C of X and an open subset U of X with $C \subset U$ so that there is $\underline{no} r > 0$ with $\bigcup_{x \in C} N_r(x) \subset U$. Answer Take $\mathbb R$ with the usual metric and let C be the positive integers and U be the open set $\bigcup_{n \in N} \left(n \frac{1}{n}, n + \frac{1}{n}\right)$. The Archimedean property implies there is no positive r with $r < \frac{1}{n}$ for all $n \in \mathbb{N}$, so this C is as desired. It is not difficult to find examples of connected C's and U's satisfying this question in \mathbb{R}^2 .
- (14) 6. a) Prove directly from the definition of compactness that the half-open interval $(0,1] \subset \mathbb{R}$ is not compact. (\mathbb{R} has the usual topology.) **Answer** Take $U_n = \left(\frac{1}{n},1\right]$. Then $\{U_n\}_{n\in\mathbb{N}}$ is an open cover of (0,1] and $U_{n+1} \supset U_n$. It is a cover by the Archimedean property. The cover "nests" since $\frac{1}{n+1} < \frac{1}{n}$. If $\{U_{n_j}\}_{1 \le j \le N}$ is a finite subcover, $\bigcup_{1 \le j \le N} U_{n_j} = U_M$ where $M = \max\{n_j : 1 \le j \le N\}$. But $U_M = \left(\frac{1}{M}, 1\right] \ne (0, 1]$ by the Archimedean property. b) Prove that a Cauchy sequence in a metric space is bounded. **Answer** Proved in class and in the text.
- (15) 7. Suppose the following is known about three sequences:

If n is a positive integer, then $|x_n-2|<\frac{5}{n},\ |y_n-6|<\frac{20}{\sqrt{n}},\ \text{and}\ |z_n-5|<\frac{6}{n^2}.$ Then the sequences $\{x_n\},\ \{y_n\},\ \text{and}\ \{z_n\}\ \text{converge},\ \text{and}\ \text{their}\ \text{respective limits}\ \text{are}\ 2,\ 6,\ \text{and}\ 5.$ The sequence whose n^{th} term is $x_ny_n-z_n$ converges and its limit is $2\cdot 6-5=7$. Do not prove this, but find and verify a specific n so that $|(x_ny_n-z_n)-7|<\frac{1}{1,000}.$ This need not be a "best possible" n but you must supply a specific n and a proof of your estimate. Answer $|(x_ny_n-z_n)-7|=|(x_ny_n-z_n)-(2\cdot 6-5)|\leq |x_ny_n-2y_n+2y_n-2\cdot 6|+|z_n-5|\leq |x_n-2|\,|y_n|+2|y_n-6|+|z_n-5|.$ Suppose $n\geq (100)^2.$ Then $|y_n-6|<\frac{20}{100}=\frac{1}{5}$ so that $|y_n|\leq |y_n-6|+|6|<7$ as well as $|y_n-6|<\frac{20}{\sqrt{n}}.$ Further, we know $|x_n-2|\,|y_n|<\frac{5}{n}\cdot 7=\frac{35}{n}.$ Therefore $|(x_ny_n-z_n)-7|<\frac{35}{n}+\frac{20}{\sqrt{n}}+\frac{6}{n^2}.$ Wow! Now take $n=10^{10}$ so $\frac{35}{n}=\frac{35}{10^{10}}<\frac{1}{3,000},$ $\frac{20}{\sqrt{n}}=\frac{20}{10^5}<\frac{1}{3,000},$ and $\frac{6}{n^2}=\frac{6}{10^{20}}<\frac{1}{3,000}.$ The total will be less than $\frac{1}{1,000}.$