640:421:02

- (16) 1. Here is a graph of the function f(t) which is piecewise linear.
 - a) Use the definition of the Laplace transform to find the Laplace trans-f(t) form of the function f(t). Answer f(t) is t-1 for 1 < t < 2 and 0 otherwise. The Laplace transform is $\mathcal{L}(f(t))(s) = \int_0^\infty e^{-st} f(t) \, dt = \int_1^2 e^{-st} (t-1) \, dt = \int_1^2 e^{-st} t \, dt \int_1^2 e^{-st} \, dt$. The second integral is easy: $\int_1^2 e^{-st} \, dt = -\frac{e^{-st}}{s} \Big|_{t=1}^{t=2} = -\frac{e^{-2s}}{s} + \frac{e^{-s}}{s}.$ Integrate by parts in the first integral: $\frac{u=t}{dv=e^{-st}dt} \Big|_{t=1}^{t=2} = -\frac{e^{-2s}}{s} + \frac{e^{-s}}{s}.$ Then $\int_1^2 e^{-st} t \, dt = t \left(-\frac{1}{s}e^{-st}\right)\Big|_{t=1}^{t=2} \int_1^2 -\frac{1}{s}e^{-st} \, dt = -\frac{2e^{-2s}}{s} + \frac{e^{-s}}{s} + \frac{e^$
 - b) Certainly $\int_0^\infty f(t) dt = \frac{1}{2}$. Use l'Hopital's rule to verify that $\lim_{s \to 0^+} F(s) = \frac{1}{2}$. Be sure to indicate why l'Hopital's rule applies each time you use it.

Answer $F(s) = \frac{-se^{-2s} - e^{-2s} + e^{-s}}{s^2}$. When s = 0, this is $\frac{0}{0}$. So (l'H) the limit is the same as the limit as $s \to 0^+$ of $\frac{-e^{-2s} + 2se^{-2s} + 2e^{-2s} - e^{-s}}{2s} = \frac{2se^{-2s} + e^{-2s} - e^{-s}}{2s}$. Again, when s = 0, this is $\frac{0}{0}$. l'H says consider the limit as $s \to 0^+$ of $\frac{2e^{-2s} - 4se^{-2s} - 2e^{-2s} + e^{-s}}{2}$. This is $\frac{1}{2}$.

(14) 2. a) Use the Laplace transform to solve the initial value problem y'' - 3y' = 1 with $\begin{cases} y(0) = 1 \\ y'(0) = -1 \end{cases}$

Answer The Laplace transform of y'' is $s^2Y(s)-sy(0)-y'(0)=s^2Y(s)-s+1$ and the Laplace transform of y'=sY(s)-y(0)=sY(s)-1. The equation becomes $s^2Y(s)-s+1-3(sY(s)-1)=\frac{1}{s}$ which then becomes $Y(s)=\frac{\frac{1}{s}+s-4}{s^2-3s}$. The rational function on the right-hand side is $\frac{s^2-4s+1}{s^2(s-3)}$. The table doesn't have an entry for this, so we'll use partial fractions: $\frac{s^2-4s+1}{s^2(s-3)}=\frac{A}{s}+\frac{B}{s^2}+\frac{C}{s-3}=\frac{As(s-3)+B(s-3)+Cs^2}{s^2(s-3)}$. Therefore we need A and B and C so that $s^2-4s+1=As(s-3)+B(s-3)+Cs^2$. If s=0 then $B=-\frac{1}{3}$. If s=3 then 9C=-2 and $C=-\frac{2}{9}$. Use your favorite method (mine: compare s^2 coefficients) to get $A=\frac{11}{9}$. Now we should find the inverse Laplace transform of $\frac{11}{s}+\frac{1}{s^2}+\frac{2}{s-3}$. We use the table to read off the answer: $y(t)=\frac{11}{9}-\frac{1}{3}t-\frac{2}{9}e^{3t}$.

b) Check that your answer satisfies the initial conditions.

Answer $y(0) = \frac{11}{9} - \frac{2}{9}e^0 = 1$. $y'(t) = -\frac{1}{3} - \frac{2}{3}e^{3t}$ so $y'(0) = -\frac{1}{3} - \frac{2}{3}e^0 = -1$.

(12) 3. Find the Laplace transform of H(t-3) $(t^2 + e^{5t} + 1)$.

Answer We write $t^2 + e^{5t} + 1$ as a function of t - 3 to use the shifting theorem: $t^2 + e^{5t} + 1 = 4((t - 3) + 3)^2 + e^{5((t-3)+3)} + 1 = ((t-3)^2 + 6(t-3) + 9) + e^{15}e^{5(t-3)} + 1$. Now we can use the table (shifting and other facts) to see that the Laplace transform of H(t-3) $(t^2 + e^{5t} + 1)$ is $e^{-3s}(\frac{2}{s^3} + \frac{6}{s^2} + \frac{9}{s} + e^{15}\frac{1}{s-5} + \frac{1}{s})$.

(8) 4. Compute the convolution of e^{5t} and e^{8t} .

Answer The product of the Laplace transforms is the Laplace transform of the convolution, so the answer is the inverse Laplace transform of $\frac{1}{(s-5)(s-8)}$. We can read this off the table (here a=5 and b=8): $\frac{e^{5t}-e^{8t}}{5-8}$. You could also compute the convolution from the definition: $\int_0^t e^{5(t-\tau)}e^{8\tau}d\tau = e^{5t}\int_0^t e^{3\tau}d\tau = e^{5t}\frac{1}{3}e^{3\tau}\Big|_{\tau=0}^{\tau=t} = e^{5t}\frac{1}{3}(e^{3t}-1)$, the same answer.

(20)

5. a) Solve the initial value problem $y'' + y = H(t - \pi) + \delta(t - \frac{\pi}{2})$ with $\begin{cases} y(0) = 0 \\ y'(0) = 0 \end{cases}$.

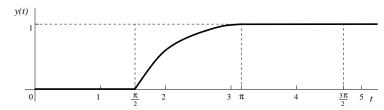
Answer Laplace transform gives $s^2Y(s) + Y(s) = \frac{e^{\pi s}}{s} + e^{\frac{\pi}{2}s}$. Therefore $Y(s) = \frac{e^{\pi s}}{(s^2+1)s} + \frac{e^{\frac{\pi}{2}s}}{s^2+1}$. The inverse Laplace transform of the second term can be read off the table: $H(t - \frac{\pi}{2})\sin(t - \frac{\pi}{2})$. The other term is an exponential multiplying $\frac{1}{(s^2+1)s}$. That needs splitting up by partial fractions: $\frac{As+B}{s^2+1} + \frac{C}{s}$. Then $s(As+B) + C(s^2+1) = 1$ so (s=0) C=1 and B=0 (s coefficient) and A=-1 (s² coefficient). Thus $\frac{1}{(s^2+1)s} = \frac{-s}{s^2+1} + \frac{1}{s}$ which maybe we could have guessed. Now we still want the inverse Laplace transform of $e^{\pi s} \left(\frac{-s}{s^2+1} + \frac{1}{s} \right)$. We can read this off the table: $H(t-\pi) \left(-\cos(t-\pi) + 1 \right)$. The complete answer is $y(t) = H(t - \frac{\pi}{2})\sin(t - \frac{\pi}{2}) + H(t - \pi)(-\cos(t - \pi) + 1).$

b) Write formulas without Heaviside functions for y(t) in the indicated intervals:

Answer If $0 < t < \frac{\pi}{2}$ then y(t) = 0.

If $\frac{\pi}{2} < t < \pi$ then $y(t) = \sin(t - \frac{\pi}{2})$. If $\pi < t$ then $y(t) = \sin(t - \frac{\pi}{2}) - \cos(t - \pi) + 1$ (a fine answer!). Amazingly, this is just y(t) = 1.

c) Graph y(t) as well as you can on the axes below.



d) For which t in the interval 0 < t < 5 is y(t) differentiable?

Answer Certainly y(t) is differentiable away from $t = \frac{\pi}{2}$ and $t = \pi$. In fact, we are lucky because $\sin(t - \frac{\pi}{2})$ has a maximum at π , so that the function is also differentiable at π .

6. a) Find the Laplace transform of this linear first-order system of ordinary differential equations (14)

 $\begin{cases} 2x'(t) + 3x(t) + y'(t) = e^t \\ x'(t) + x(t) - y'(t) + 5y(t) = \sin t \end{cases} \text{ with initial conditions } \begin{cases} x(0) = 1 \\ y(0) = 0 \end{cases}$ $\mathbf{Answer} \begin{cases} 2sX(s) - 2 + 3X(s) + sY(s) = \frac{1}{s-1} \\ sX(s) - 1 + X(s) - sY(s) + 5Y(s) = \frac{1}{s^2+1} \end{cases}$

b) Find an expression for the Laplace transform, X(s), of x(t) which does not involve the Laplace transforms

of y(t). Do **not** simplify your answer! Do **not** try to compute x(t)! **Answer** Rewrite the equations slightly: $\begin{cases} (2s+3)X(s) & +sY(s) = \frac{1}{s-1}+2\\ (s+1)X(s) & +(5-s)Y(s) = \frac{1}{s^2+1}+1 \end{cases}$ Now we see two linear equations in two unknowns. Multiply the first equation by 5-s and the second equation by s and subtract: $((5-s)(2s+3)-s(s+1))X(s) = (5-s)\left(\frac{1}{s-1}+2\right)-s\left(\frac{1}{s^2+1}+1\right)$ so that we can solve for

$$X(s) = \frac{(5-s)(\frac{1}{s-1}+2)-s(\frac{1}{s^2+1}+1)}{((5-s)(2s+3)-s(s+1))}.$$

Comment Maple reported in about .1 second that the inverse Laplace transform of X(s) given above is $2/9*\exp(t)-1/20*\cos(t)-1/60*\sin(t)+(149/360-61/360*6^*(1/2))*\exp((6^*(1/2)+1)*t)+(149/360+61/360*6^*(1/2))*\exp(-(6^*(1/2)-1)*t)+(149/360+61/360*6^*(1/2))*\exp(-(6^*(1/2)-1)*t)+(149/360+61/360*6^*(1/2))*\exp(-(6^*(1/2)-1)*t)+(149/360+61/360*6^*(1/2))*\exp(-(6^*(1/2)-1)*t)+(149/360+61/360*6^*(1/2))*\exp(-(6^*(1/2)-1)*t)+(149/360+61/360*6^*(1/2))*\exp(-(6^*(1/2)-1)*t)+(149/360+61/360*6^*(1/2))*\exp(-(6^*(1/2)-1)*t)+(149/360+61/360*6^*(1/2))*\exp(-(6^*(1/2)-1)*t)+(149/360+61/360*6^*(1/2))*\exp(-(6^*(1/2)-1)*t)+(149/360+61/360*6^*(1/2))*\exp(-(6^*(1/2)-1)*t)+(149/360+61/360*6^*(1/2))*\exp(-(6^*(1/2)-1)*t)+(149/360+61/360*6^*(1/2))*\exp(-(6^*(1/2)-1)*t)+(149/360+61/360*6^*(1/2))*\exp(-(6^*(1/2)-1)*t)+(149/360+61/360*6^*(1/2))*\exp(-(6^*(1/2)-1)*t)+(149/360+61/360*6^*(1/2))*\exp(-(6^*(1/2)-1)*t)+(149/360+61/360*6^*(1/2))*\exp(-(6^*(1/2)-1)*t)+(149/360+61/360*6^*(1/2))*\exp(-(6^*(1/2)-1)*t)+(149/360+61/360*6^*(1/2))*\exp(-(6^*(1/2)-1)*t)+(149/360+61/360*6^*(1/2))*(266-61/360*6$

(16)7. Show that $\mathbf{u} = (1, -1, 0, 1, 1)$ and $\mathbf{v} = (2, 2, -2, 2, 2)$ and $\mathbf{w} = (1, 5, -3, 1, 1)$ are linearly dependent in \mathbb{R}^5 .

Answer We need to find a non-trivial solution to the vector equation $a\mathbf{u} + b\mathbf{v} + c\mathbf{w} = \mathbf{0}$, which is a(1,-1,0,1,1) + b(2,2,-2,2,2) + c(1,5,-3,1,1) = (0,0,0,0,0). We must solve the scalar system

$$\begin{cases} 1a + 2b + c = 0 \\ -1a + 2b + 5c = 0 \\ 0a - 2b - 3c = 0 \\ 1a + 2b + 1c = 0 \\ 1a + 2b + 1c = 0 \end{cases} \Longrightarrow \begin{cases} 1a + 2b + c = 0 \\ 0a + 4b + 6c = 0 \\ 0a - 2b - 3c = 0 \\ 0a + 0b + 0c = 0 \\ 0a + 0b + 0c = 0 \end{cases} \Longrightarrow \begin{cases} 1a + 0b - 2c = 0 \\ 0a + 1b + \frac{3}{2}c = 0 \\ 0a + 0b + 0c = 0 \\ 0a + 0b + 0c = 0 \end{cases}$$

The values c=1 and a=2 and $b=-\frac{3}{2}$ provide a non-trivial solution.