(6) 1. Complete the definition.

Suppose v_1, v_2, \ldots and v_t are vectors in \mathbb{R}^n . Then v_1, v_2, \ldots and v_t are called *linearly independent* if

(18) 2. Suppose that
$$A = \begin{pmatrix} -1 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & -1 \end{pmatrix}$$
.

- a) Compute the characteristic polynomial of A.
- b) Find the eigenvalues of A.
- c) Find a basis of \mathbb{R}^3 consisting of eigenvectors of A.
- d) Find a diagonal matrix D and an invertible matrix P so that $P^{-1}AP = D$.
- e) Find P^{-1} .
- f) Compute Z = AP.
- g) Compute $P^{-1}Z$ using the results of e) and f).

Problems for extra credit on the second exam in Math 421, section 2

May 11, 2004

NAME.		

Do all problems, in any order.

Show your work. An answer alone may not receive full credit.

No calculators may be used on this exam.

Problem	Possible	Points
Number	Points	Earned:
1	6	
2	18	
Total Poi	nts Earned:	