The last two lectures will discuss some aspects of solutions of the heat and wave equations for two-dimensional regions. Sections 13.5 and 13.8 of the text contain some relevant material. In these problems, S denotes the π -by- π square with lower left corner at (0,0).

- 1. In the lecture a solution to $\Delta u = u_{xx} + u_{yy} = 0$ on S was found which satisfied (BC) u(x,0) = 0 & $u(x,\pi) = 0$ for $0 \le x \le \pi$; u(0,y) = 0 & $u(\pi,y) = 1$ for $0 \le y \le \pi$ That solution will be called U(x,y) in this problem.
- a) Suppose V(x, y) is the solution to $\Delta u = 0$ on S satisfying:

(BC) u(x,0) = 0 & $u(x,\pi) = 1$ for $0 \le x \le \pi$; u(0,y) = 0 & $u(\pi,y) = 0$ for $0 \le y \le \pi$. Describe V(x,y) in terms of U(x,y).

b) Suppose W(x,y) is the solution to $\Delta u = 0$ on S satisfying:

(BC) u(x,0) = 1 & $u(x,\pi) = 0$ for $0 \le x \le \pi$; u(0,y) = 0 & $u(\pi,y) = 0$ for $0 \le y \le \pi$. Describe W(x,y) in terms of U(x,y).

c) Suppose Z(x, y) is the solution to $\Delta u = 0$ on S satisfying:

(BC) $u(x,0) = 5 \& u(x,\pi) = -7 \text{ for } 0 \le x \le \pi; \ u(0,y) = 22 \& u(\pi,y) = 4 \text{ for } 0 \le y \le \pi.$ Describe Z(x,y) in terms of U(x,y).

Note No significant computation is needed in this problem: use linearity and ingenuity.

2. Find a solution to $\Delta u = 0$ on S satisfying

(BC) u(x,0) = 0 & $u(x,\pi) = 0$ for $0 \le x \le \pi$; u(0,y) = 0 for $0 \le y \le \pi$; $u(\pi,y) = 0$ for $0 \le y \le \frac{\pi}{2}$ and $u(\pi,y) = 1$ for $\frac{\pi}{2} < y \le \pi$.

The solution should be written in terms of an appropriate infinite series.

- 3. Suppose $F(x, y) = 7 \sin 3x \sin 8y 9 \sin 11x \sin 4y$.
- a) Find a solution to the heat equation $u_t = \Delta u$ in S subject to the following boundary and initial conditions:

(BC) $u(x,0,0) = 0 \ \& \ u(x,\pi,0) = 0$ for $0 \le x \le \pi; \ u(0,y,0) = 0 \ \& \ u(\pi,y,0) = 0$ for $0 \le y \le \pi$

(IC) u(x, y, 0) = F(x, y).

What happens to u(x, y, t) as $\to \infty$?

b) Find a solution to the wave equation $u_{tt} = \Delta u$ in S subject to the following boundary and initial conditions:

(BC) $u(x,0,0) = 0 \& u(x,\pi,0) = 0$ for $0 \le x \le \pi$; $u(0,y,0) = 0 \& u(\pi,y,0) = 0$ for $0 \le y \le \pi$

(IC) u(x, y, 0) = F(x, y) and $u_t(x, y, 0) = 0$.

What happens to u(x, y, t) as $\to \infty$?

4. Suppose f(x,y) is 1 exactly when $0 \le x \le \frac{\pi}{2}$ and $0 \le y \le \frac{\pi}{3}$. Write f(x,y) as the sum of a double sine series in S.

Note Here's a picture of a partial sum when the $\sin(nx)\sin(my)$'s satisfy $n, m \leq 50$.

