## Answers to the First Exam

- (16)1. Here is a graph of the function f(t) which is piecewise constant. The values of f(t) are 2 and -1 and 0. f(t) is 0 for all t > 3.
  - a) Use the definition of Laplace transform to find the Laplace transform F(s) of the function f(t).

Answer  $F(s) = \int_0^\infty f(t)e^{-st} dt = \int_0^1 2e^{-st} dt + \int_1^3 -e^{-st} dt$ . This is  $\left[\frac{2e^{-st}}{-s}\right]_0^1 - \frac{e^{-st}}{-s}\Big]_1^3 = \frac{2-e^{-s}-2e^{-s}+e^{-3s}}{s} = \frac{2-3e^{-s}+e^{-3s}}{s}$ . b) Certainly  $\int_0^\infty f(t) dt = 0$ . Use l'Hopital's rule to verify that  $\lim_{s \to 0^+} F(s) = 0$ .

= 0. Be sure to indicate why l'Hopital's rule is valid when you use it.

Answer The quotient  $\frac{2-3e^{-s}+e^{-3s}}{s}$  has the form  $\frac{0}{0}$  when s=0. We use  $\frac{1}{s}$  l'Hopital's rule:  $\lim_{s\to 0^+} \frac{2-3e^{-s}+e^{-3s}}{s} \stackrel{\text{L'H}}{=} \lim_{s\to 0^+} \frac{3e^{-s}-3e^{-3s}}{1} = \frac{0}{1} = 0$ .

2. a) Use Laplace transforms to solve the integrodifferential equation  $y'(t) + 2\int_0^t y(\tau) d\tau = 3t$  with initial (18)condition y(0) = 0.

Answer The Laplace transform of the equation is  $sY(s) - y(0) + \frac{2}{s}Y(s) = \frac{3}{s^2}$ . Insert the initial condition and solve for Y(s):  $Y(s) = \frac{3}{s^3+2s}$ . Now use partial fractions:  $\frac{3}{s^3+2s} = \frac{3}{(s^2+2)s} = \frac{A}{s} + \frac{Bs+C}{s^2+2}$  and we get  $3 = A(s^2+2) + (Bs+C)s$ . If s = 0, then  $A = \frac{3}{2}$ . The  $s^2$  coefficient leads to  $B = -\frac{3}{2}$  and the s coefficient shows that C=0. Therefore we need the inverse Laplace transform of  $\frac{3}{s}+\frac{-\frac{3}{2}s}{s^2+2}$  which can be read off the table:  $\frac{3}{2} - \frac{3}{2}\cos(\sqrt{2}t)$ .

- b) Check that your answer satisfies the original equation. **Answer**  $y'(t) = \frac{3\sqrt{2}}{2}\sin(\sqrt{2}t)$  and  $\int_0^t y(\tau) d\tau = \frac{3}{2}t \frac{3}{2\sqrt{2}}\sin(\sqrt{2}t)$  so that  $y'(t) + 2\int_0^t y(\tau) d\tau = \frac{3\sqrt{2}}{2}\sin(\sqrt{2}t) + 2\left(\frac{3}{2}t \frac{3}{2\sqrt{2}}\sin(\sqrt{2}t)\right) = 3t$  since  $\frac{3\sqrt{2}}{2} 2\frac{3}{2\sqrt{2}} = 0$ .
- (20)

**Answer**  $\int_0^5 \left(e^{3t}\right) \left(\mathcal{U}(t-2) + \delta(t-4)\right) dt = \int_0^5 e^{3t} \mathcal{U}(t-2) dt + \int_0^5 e^{3t} \delta(t-4) dt = \int_2^5 e^{3t} dt + e^{12} = \frac{1}{3}e^{3t} \Big]_2^5 + e^{12} = \frac{1}{3}(e^{15} - e^6) + e^{12}.$ 

b) Compute the Laplace transform of  $\mathcal{U}(t-3)$   $(4t+e^{7t})$ .

**Answer** This is  $e^{-3s}$  multiplied by the Laplace transform of the result of substituting t+3 for t in  $4t+e^{7t}$ . That substitution gives  $4(t+3) + e^{7(t+3)} = 4t + 12 + e^{21}e^{7t}$  which has Laplace transform  $\frac{4}{s^2} + \frac{12}{s} + \frac{e^{21}}{s-7}$  so the answer is  $e^{-3s} \left( \frac{4}{s^2} + \frac{12}{s} + \frac{e^{21}}{s-7} \right)$ .

c) Compute the convolution of t and  $e^{2t}$ .

Answer The product of the Laplace transforms is the Laplace transform of the convolution, so the answer is the inverse Laplace transform of  $\frac{1}{s^2(s-2)}$ . Partial fractions again:  $\frac{1}{s^2(s-2)} = \frac{A}{s} + \frac{B}{s^2} + \frac{C}{s-2}$  resulting in  $1 = As(s-2) + B(s-2) + Cs^2$ . When s = 0, we get  $B = -\frac{1}{2}$ . When s = 2,  $C = \frac{1}{4}$ . The  $s^2$  coefficient gives  $A = -\frac{1}{4}$ . The inverse Laplace transform of  $\frac{-\frac{1}{4}}{s} + \frac{-\frac{1}{2}}{s^2} + \frac{\frac{1}{4}}{s-2}$  is  $-\frac{1}{4} - \frac{1}{2}t + \frac{1}{4}e^{2t}$ .

The convolution requested can also be computed using the definition:  $\int_0^t (t-\tau)e^{2\tau} \ d\tau = \frac{t}{2}e^{2\tau} - \left(\frac{\tau e^{2\tau}}{2} - \frac{e^{2\tau}}{4}\right)\Big|_0^t = \frac{t}{2}e^{2\tau} - \frac{t}{2}e^{2\tau} - \frac{e^{2\tau}}{4}e^{2\tau} - \frac{e^{2$ the same answer. The antidifferentiation uses one integration by parts

4. a) Solve the initial value problem  $y' + y = 2\mathcal{U}(t-1) - \mathcal{U}(t-3)$  with y(0) = 2. (20)

Answer The Laplace transform of the equation is  $sY(s) - 2 + Y(s) = \frac{2e^{-s}}{s} - \frac{e^{-3s}}{s}$ . We solve for Y(s) and get  $Y(s) = \frac{2e^{-s} - e^{-3s} + 2s}{s(s+1)} = \frac{2e^{-s} - e^{-3s}}{s(s+1)} + \frac{2}{s+1}$ . The inverse Laplace transform of the last piece is just  $2e^{-t}$ . For the rest, we use partial fractions on  $\frac{1}{s(s+1)}$ . The result is  $\frac{1}{s(s+1)} = \frac{1}{s} - \frac{1}{s+1}$ . Now consider  $(2e^{-s}-e^{-3s})\left(\frac{1}{s}-\frac{1}{s+1}\right)$ . The inverse Laplace transform of  $2e^{-s}\left(\frac{1}{s}-\frac{1}{s+1}\right)$  is  $2\mathcal{U}(t-1)\left(1-e^{-(t-1)}\right)$  and the inverse Laplace transform of  $-e^{-3s}\left(\frac{1}{s}-\frac{1}{s+1}\right)$  is  $-\mathcal{U}(t-3)\left(1-e^{-(t-3)}\right)$ 

OVER

And finally,  $y(t) = 2U(t-1)(1-e^{-(t-1)}) - U(t-3)(1-e^{-(t-3)}) + 2e^{-t}$ .

b) Write formulas without Heaviside functions for y(t) in the indicated intervals:

**Answer** If 0 < t < 1 then  $y(t) = \underline{2e^{-t}}$ .

If 1 < t < 3 then  $y(t) = 2e^{-t} + 2 - 2e^{-(t-1)}$ .

If 3 < t then  $y(t) = 2e^{-t} + 2 - 2e^{-(t-1)} - 1 + e^{-(t-3)}$ .

c) Graph y(t) as well as you can on the axes below.

**Answer** In the interval 1 < t < 3, we can rewrite the formula for y(t) as  $2 + (2 - 2e)e^{-t}$ , and see that as  $t \to 1^+$ , this  $\to 2 + (2 - 2e)e^{-1} = 2e^{-1}$ . This is the same as  $\lim_{t \to 1^-} 2e^{-t}$ . The exponential's coefficient, 2 - 2e,

is negative. Therefore the curve is concave down.

For t>3, the formula for y(t) becomes  $1+\left(2-2e+e^3\right)e^{-t}$ . This part of the curve is concave up because  $2-2e+e^3$  is positive. As  $t\to 3^+$ , this formula  $\to 1+\left(2-2e+e^3\right)e^{-3}=1+2e^{-3}-2e^{-2}+1$  which is the same as  $\lim_{t\to 3^-}2+\left(2-2e\right)e^{-t}$ .



d) For which t in the interval 0 < t < 5 is y(t) continuous? **Answer** All t.

e) For which t in the interval 0 < t < 5 is y(t) differentiable?

**Answer** All t except t = 3 and = 1.

f) What is  $\lim_{t\to\infty} y(t)$ ?

**Answer**  $1 + (2 - 2e + e^3) e^{-t} \to 1$  as  $\to \infty$  since  $e^{-t} \to 0$  as  $\to \infty$ .

5. Find a linear combination of (2, 1, -1, 1) and (-1, 1, 1, 2) and (1, 1, 3, -2) which is equal to (7, 1, -11, 6).

Note You may use one of the RREF's supplied. If you do this, tell which one you use and describe how you use it

**Answer** We need constants A and B and C so that A(2, 1, -1, 1) + B(-1, 1, 1, 2) + C(1, 1, 3, -2) = (7, 1, -11, 6). This is just

$$\left\{ \begin{array}{l} 2A - 1B + 1C = 7 \\ 1A + 1B + 1C = 1 \\ -1A + 1B + 3C = -11 \\ 1A + 2B - 2C = 6 \end{array} \right.$$

This system is an instantiation of the augmented matrix **PACIFIC** with P=7, Q=1, R=-11, and S=6. The row-reduced form of **PACIFIC** allows us to conclude that  $A=\frac{1}{5}P+\frac{2}{5}Q-\frac{1}{5}R=\frac{7}{5}+\frac{2}{5}+\frac{11}{5}=4$ ,  $B=-\frac{2}{5}P+\frac{7}{10}Q-\frac{1}{10}R=-\frac{14}{5}+\frac{7}{10}+\frac{11}{10}=-1$ , and  $C=\frac{1}{5}P-\frac{1}{10}Q+\frac{3}{10}R=\frac{7}{5}-\frac{1}{10}-\frac{33}{10}=-2$ . The last equation, P-2Q+R+S=0, furnishes a useful way to check since 7-2(1)-11+6 is equal to 0. Therefore 4(2,1,-1,1)-1(-1,1,1,2)-2(1,1,3,-2)=(7,1,-11,6).

(12) 6. Prove that the three functions  $t^3$  and  $t^2(t-1)$  and t(t-1)(t+1) are linearly independent.

Answer Suppose that  $At^3 + Bt^2(t-1) + Ct(t-1)(t+1) = 0$  for some constants, A, B, and C, and for all t. We must verify that all of these constants are 0. Only one expression has a t coefficient, the last. Thus C = 0. Then we consider  $At^3 + Bt^2(t-1) = 0$ . Only one expression has a  $t^2$  coefficient, the last. Thus B = 0. Finally we have  $At^3 = 0$  so that A must be 0.

Certainly there are other ways to do this problem successfully. For example, set t = 1, and then observe that A must be 0, etc.