Math 421:01 Some vibration examples December 1, 2005

I defined a small triangular initial condition for Maple as an initial position:
>F:=x->piecewise(x<Pi/3,0,x<Pi/3+Pi/12,x-(Pi/3) ,x<Pi/2,Pi/3+Pi/6-x,0);

Here is a picture of the initial perturbation, together with the sum of the first 10 terms of its Fourier sine

series. To the right is a similar picture, except that what’s shown is the sum of the first 100 terms of its

Fourier sine series. I can’t see any difference between the two curves in the picture on the right.
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The equations used are: b, = 2 [7 F(z)sin(nz) dz with Qn(z) = 25:1 by, sin(nx), the partial sum of the
Fourier sine series. Let’s “solve” the wave equation with this initial data, and with the boundary conditions
corresponding to the ends fastened at 0 and 7: so we want u(z, t) satisfying: PDE u,, = uy; BC u(0,¢) = 0;
u(m,t) = 0 for all t; IC wu(z,0) = F(z) and uy(x,0) = 0, both for 0 < z < 7. The approximate solution will

be Vn(x) = 25:1 by, sin(nx) cos(nt). Here are pictures for various t’s:
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Now let’s “solve” an initial velocity problem. Here we suppose that the initial velocity of the string is up
one unit in the interval [T, 7].

>G:=x->piecewise(x<Pi/3,0,x<Pi/2,1,0);

And here is a picture of the Fourier sine series, first for n = 10 and then for n = 100:
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The equations used here are: ¢, = 2 [" G(z)sin(nz) dz, with Qn(z) = Zf:’:l by, sin(nx), the partial sum of

the Fourier sine series. Now let’s “solve” the wave equation with this initial data, and with the boundary
conditions corresponding to the ends fastened at 0 and m: so we want u(z,t) satisfying: PDE u,,; = uy;
BC u(0,t) = 0; u(m,t) =0 for all ¢; IC u(z,0) = 0 and u,(z,0) = G(x), both for 0 < z < 7.
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The approximate solution will be Vi (z) = >, = sin(nz) sin(nt). Here are pictures for various t’s:
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