Please read $\S1.3$ and 1.4 (pp. 22–36) in N^2 .

Problem 1: Do Exercise 73 of N^2 , which follows:

One of the definitions of the **dilogarithm** Li_2 is the series $Li_2(z)$; = $\sum_{n=1}^{\infty} \frac{z^n}{n^2}$.

- (73.1) Determine its radius of convergence, R.
- (73.2) Determine whether the series converges on the closure $\overline{D(0,R)}$.
- (73.3) For each real $\varepsilon > 0$, determine an integer n_{ε} such that for every integer $m \geq n_{\varepsilon}$ and for every $z \in D(0,R)$, $\left| \sum_{n>m} \frac{z^n}{n^2} \right| < \varepsilon$.
- (73.4) Show that inside the topological interior of the disc of convergence the complex dilogarithm satisfies a second-order linear ordinary differential equation with rational coefficients.

Problem 2: Suppose μ is a compactly supported measure in \mathbb{C} . Define F_{μ} , the Cauchy transform of μ , by $F_{\mu}(z) = \int_{\mathbb{C}} \frac{1}{w-z} d\mu_w$ for $z \notin \text{supp } \mu$.

- a) Prove that F_{μ} is holomorphic in $\mathbb{C} \setminus \text{supp } \mu$ and that $\lim_{z \to \infty} F_{\mu}(z) = 0^*$.
- b) Suppose that μ is Lebesgue measure on the boundary of the unit circle. What is F_{μ} ?
- c) Suppose that μ is Lebesgue measure on the unit interval, [0, 1], of \mathbb{R} . What is F_{μ} ?

Problem 3: Show that the series $\sum_{n=1}^{\infty} \frac{z}{(1+|z|)^n}$ converges (absolutely) pointwise but not locally uniformly on \mathbb{C} .

From Classical Complex Analysis by Liang-sin Hahn and Bernard Epstein.

The following two problems are from $Theory\ of\ Complex\ Functions$ by Reinhold Remmert.

Problem 4: Using the Cauchy integral formula calculate

a)
$$\int_{\partial D(0,2)} \frac{e^z dz}{(z+1)(z-3)^2}$$

b)
$$\int_{\partial D(0,2)} \frac{\sin z}{z+i} dz$$
 (sin(z) is $\frac{e^{iz}-e^{-iz}}{2i}$ or anything convenient.)

c)
$$\int_{\partial D(-2i,2)} \frac{dz}{z^2+1}$$

d)
$$\int_{\partial D(0,1)} \frac{e^z dz}{(z-2)^3} dz$$

Problem 5: Let f be holomorphic in D(0,R), R>1. Calculate the integrals $\int_{\partial D(0,1)} \left(2\pm (\zeta+\zeta^{-1})\right) \frac{f(\zeta)}{\zeta} \, d\zeta \text{ two different ways and thereby deduce that } \pi^{-1} \int_0^{2\pi} f(e^{it}) \cos^2\left(\frac{1}{2}t\right) dt = f(0) + \frac{1}{2}f'(0) \text{ and } \pi^{-1} \int_0^{2\pi} f(e^{it}) \sin^2\left(\frac{1}{2}t\right) dt = f(0) - \frac{1}{2}f'(0).$

^{*} Given $\varepsilon > 0$, there is M > 0 so that if |z| > M then $F_{\mu}(z)$ is defined and $|F_{\mu}(z)| < \varepsilon$.