Addendum

Problem 2 of **Homework #3** begins

Suppose μ is a compactly supported measure in \mathbb{C} .

I realized that you may not (yet) know what a "compactly supported measure in \mathbb{C} " is. For the purposes of this problem, please think of μ as the following:

There is a complex linear mapping $T: C(\mathbb{C}) \to \mathbb{C}$, a compact subset K of \mathbb{C} , and a positive real constant W so that this estimate is true for all $f \in C(\mathbb{C})$:

$$|T(f)| \le W \sup_{z \in K} \{|f(z)|\}.$$

We will write T(f) as $\int_{\mathbb{C}} f(w) d\mu_w$.

That should help you prove that F_{μ} is holomorphic, and prove the requested limiting property of F_{μ} . Please tell me if this is correct.

For part b), the compact set is the boundary of the unit circle, and T(f) is the line integral of f over this set. Does the F_{μ} you discover satisfy the conclusions of a)?

For part c), the compact set is [0,1], and T(f) is the usual Riemann integral of f over [0,1]. Does the F_{μ} you discover satisfy the conclusions of a)?

Hint Try to discover F_{μ} with classical antidifferentiation and "explain" the result.