Due Wednesday, October 20, 2004 Please finish reading §1.4 and §1.5 (pp. 32–43) in N^2 . Then we should begin chapter 2. Problem 1: Suppose that f is holomorphic in D(0,1) and that for all sufficiently large integers, n, $|f(\frac{1}{n})| \leq \frac{1}{n!}$. Prove that f is the zero function. Problem 2: a) An entire function is of exponential type if there are A>0 and C>0 so that for all $z\in\mathbb{C}$ with |z|>C, $|f(z)|\leq Ce^{A|z|}$. Prove that the collection of entire functions of exponential type is closed under differentiation. In fact, if f is of exponential type, so is f', with the same A but with a possibly different C. b) Show that an analogous statement for C^{∞} functions on \mathbb{R} is false. That is, define a C^{∞} real-valued function g on \mathbb{R} to be of exponential type if there are A>0 and C>0 so that for all $x\in\mathbb{R}$ with |x|>C, $|f(x)|\leq Ce^{A|x|}$. Give an example of a C^{∞} function on \mathbb{R} of exponential type whose derivative is **not** of exponential type for any choices of C and A. Problem 3: Suppose U is open in \mathbb{R} . A function $f: U \to \mathbb{R}$ is real analytic or C^{ω} if, for every $a \in U$, there is $\delta > 0$ with $(a - \delta, a + \delta) \subseteq U$ and there is a sequence of real numbers $\{c_n\}$ so that $f(x) = \sum_{n=0}^{\infty} c_n(x-a)^n$ for all $x \in (a-\delta, a+\delta)$: f is <u>real</u> analytic if f is locally the sum of a real power series. - a) Suppose $F: \Omega \to \mathbb{C}$ is holomorphic and $F(\Omega \cap \mathbb{R}) \subseteq \mathbb{R}$. If $U = \Omega \cap \mathbb{R}$ and $f = F|_U$, prove that $f: U \to \mathbb{R}$ is real analytic. - b) Suppose $f: U \to \mathbb{R}$ is real analytic with U open and connected in \mathbb{R} . Prove that there is an open and connected subset Ω of \mathbb{C} and a complex analytic function $F: \Omega \to \mathbb{C}$ so that $U = \Omega \cap \mathbb{R}$ and $f = F|_{U}$. - c) Find an f which is C^{∞} on \mathbb{R} but not real analytic on \mathbb{R} . - d) Find an f which is real analytic on $\mathbb R$ whose Taylor series at 0 has finite radius of convergence. - e) Liouville's Theorem is false for real analytic functions: find an f which is real analytic on \mathbb{R} , non-constant, and bounded. \diamondsuit Why does such an example exist? - f) An "entire" real analytic function may not have a complexification with domain \mathbb{C} . If $\varepsilon > 0$ define $S_{\varepsilon} \subset \mathbb{C}$ by $S_{\varepsilon} = \{z \in \mathbb{C} : |\text{Im } z| < \varepsilon\}$. Construct a real analytic function $f: \mathbb{R} \to \mathbb{R}$ so that there is no holomorphic F_{ε} defined on S_{ε} with $F_{\varepsilon}|_{\mathbb{R}} = f$ for any $\varepsilon > 0$. Problem 4: a) Read a version of the Weierstrass Approximation Theorem. The theorem statement should begin: "If f is continuous and real-valued on $[a, b] \subset \mathbb{R}$ and if $\varepsilon > 0$, then there is $P(x) \in \mathbb{R}[x]$ so that ..." b) If $P(z) \in \mathbb{C}[z]$, prove that $\sup\{\left|\frac{1}{z} - P(z)\right| : z \in \partial D(0,1)\} \ge 1$. **OVER** $^{^{\}circ}$ Thanks to Mr. Nguyen for suggesting these wonderful footnote characters. [•] F is called a *complexification* of f. Easy examples are better than complicated examples. I think there are easy examples for 2b), 3c), 3d), 3e), and 5b). Maybe there's an easy example for 3f) also. I would like that. Problem 5: A holomorphic function f has a holomorphic log if there is g, holomorphic in f's domain, so that $e^g = f$. A holomorphic function f has a holomorphic square root if there is g, holomorphic in f's domain, so that $g^2 = f$. Let $D^* = \{z \in \mathbb{C} : 0 < |z| < 1\}$. - a) If f is holomorphic and has a holomorphic log, then f has a holomorphic square root. - b) Give an example of a non-zero holomorphic function defined on D^* which has a square root but does not have a log. \Diamond Previous page! - c) Prove that that z has no holomorphic square root in D^* . Problem 6: a) Use what we've done so far in the course to find a biholomorphic mapping of the first quadrant to the unit disc. What is the image of the half line $\{y = x\} \cap \{x > 0\}$? What is the image of the quarter circle $\{|z| = 1\} \cap \{0 < \arg z < \frac{\pi}{2}\}$? b) Use what we've done so far in the course to find a biholomorphic mapping of the strip $\{z \in \mathbb{C} : 0 < \operatorname{Re} z < 1\}$ to the unit disc. What is the image of the line segment $\{0 < \operatorname{Re} z < 1\} \cap \{\operatorname{Im} z = 0\}$? What is the image of the line $\{\operatorname{Re} z = \frac{1}{2}\}$? We did verify that z has no log in D^* (if it did, then the log's derivative is $\frac{1}{z}$ which has no primitive in D^*). But because of b), a simple converse to a) is not likely!