Homework #7

Math 503

November 29, 2004

Due Monday, December 13, 2004

The following three problems are from Remmert's Theory of Complex Functions.

Problem 1: For a > 1 show that $\int_0^{2\pi} \frac{d\phi}{a + \sin \phi} = \frac{2\pi}{\sqrt{a^2 - 1}}$.

Problem 2: Prove the identity $\int_{-\infty}^{\infty} \frac{dx}{(x^4+a^4)^2} = \frac{3}{8} \frac{\sqrt{2}}{a^7} \pi$ for a > 0.

Problem 3: Prove that $\int_0^\infty \frac{\sqrt{x}}{x^2+a^2} dx = \frac{\pi}{\sqrt{2a}}$.

The following problem is Exercise 239 in N^2 . Similar problems are found on written qualifying exams of many universities.

Problem 4: For each positive integer n, and for each real $\lambda > 1$, prove that the equation

$$z^n = e^{z-\lambda}$$

has no solutions with |z| = 1, and exactly n simple solutions with |z| < 1.

A continuous function is *proper* if and only if the inverse image of every compact set is compact. The following problem is Exercise 297 in \mathbb{N}^2 .

Problem 5: Prove that there is no proper holomorphic map from the open unit disc into the complex plane.

The following problem is from Conway's Functions of One Complex Variable.

Problem 6: Does there exist a holomorphic function $f: D(0,1) \to D(0,1)$ with $f(\frac{1}{2}) = \frac{3}{4}$ and $f'(\frac{1}{2}) = \frac{2}{3}$?

The following problem is from Remmert's Theory of Complex Functions. Here H is the open upper halfplane, so $H = \{z \in \mathbb{C} : \operatorname{Im} z > 0\}.$

Problem 7: Let $f: D(0,1) \to H$ be holomorphic with f(0) = i. If f(0) = i, prove that

- a) $\frac{1-|z|}{1+|z|} \le |f(z)| \le \frac{1+|z|}{1-|z|}$ for $z \in D(0,1)$.
- b) $|f'(0)| \le 2$.

Problem 8: Let f be a holomorphic function which maps the unit disk into the unit disk. Show that $|f(z) + f(-z)| \le 2|z|^2$ for all z in the unit disk, and if the equality holds for some z, then $f(z) = e^{i\theta}z^2$ for some real θ .

From a qualifying exam at Johns Hopkins University

2 Solve this problem, quoted from Remmert's *Theory of Complex Functions*. Here $\mathbb E$ is the unit disc.

Let $f: \mathbb{E} \to \mathbb{E}$ be holomorphic, with f(0) = 0. Let $n \in \mathbb{N}$, $n \geq 1$, $\zeta := e^{2\pi i/n}$. Show that

(*)
$$|f(\zeta z) + f(\zeta^2 z) + \dots + f(\zeta^n z)| \le n|z|^n \text{ for all } z \in \mathbb{E}.$$

Moreover, if there is at least one $c \in \mathbb{E} \setminus \{0\}$ such that equality prevails in (*) at z = c, then there exists an $a \in \partial \mathbb{E}$ such that $f(z) = az^n$ for all $z \in \mathbb{E}$. Hint. Consider the function $h(z) := \frac{1}{nz^{n-1}} \sum_{j=1}^n f(\zeta^j z)$. For the proof of the implication $f(\zeta z) + f(\zeta^2 z) + \cdots + f(\zeta^n z) = naz^n \Rightarrow f(z) = az^n$, verify that the function $k(z) := f(z) - az^n$ satisfies

$$k(\zeta z) + k(\zeta^2 z) + \dots + k(\zeta^n z) = 0$$
 and $|az^n| + 2\Re(az^n \overline{k(\zeta^j z)}) + |k((\zeta^j z)|^2 < 1$
for every $j \in \{0, 1, \dots, n-1\}$, and consequently $|k(z)|^2 < n(1-|z|^{2n})$.

[†] This semester I've worked with a study group of grad students who are preparing for our written exams. We looked at this problem. At the urging of the VERY KIND students in the study group, I advise you that the problem statement, copied directly from the Johns Hopkins exam, is incorrect. Please do one of the following two alternative problems.

^{# 1} Find a counterexample to the problem as stated. Then add a simple hypothesis to the problem which makes it correct, and solve the resulting problem.