
Midterm exam answers Math 503 November 14, 2004

1. Create a function which is meromorphic in all of C which has exactly n poles of order
n for each n ∈ N. This function will have infinitely many poles. You can specify where
the poles are. You must show that any series you use converges in an appropriate manner.
Give details about any estimates you need.

Answer Here’s one answer. If j is a positive integer, let Qj(z) = 1
j

∑j
k=1

1
(z−(j+2j+ki))j .

Then Qj is a rational function with j poles of order j. If Sj = D(0, j), then Qj ∈ H(Sj) and
‖Qj‖Sj

≤ 1
2j . Consider now the function F =

∑∞
j=1 Qj . Write F =

∑J
j=1 Qj +

∑∞
j=J+1 Qj

and note that the infinite “tail” is holomorphic on SJ because of Weierstrass’s Theorem:
each function is holomorphic on SJ and the infinite sum is dominated there by

∑∞
j=J+1

1
2j .

The M -test shows that the series converges uniformly. The sum is itself holomorphic by
Weierstrass’s Theorem on uniform convergence of holomorphic functions. On SJ the whole
sum for F is meromorphic with j poles of order j for j small enough (|j + 2j + ji| < J).
Since C is the union of the SJ ’s, the function F has the desired properties.

2. If f is holomorphic in a neighborhood of the closed unit disc, and if |f(z)| = 1 when
|z| = 1, prove that f is a rational function.

Hint One such function is z−α
1−αz for α ∈ D(0, 1), the open unit disc.

Answer Let gα(z) = z−α
1−αz . So |gα(z)| = 1 when |z| = 1, and gα is rational with no poles

in D(0, 1) and a simple zero at α ∈ D(0, 1). If f has a zero of order k, a positive integer,
at β in D(0, 1), then f(z)/ (gβ(z))k has a removable singularity at β, since the zeros of
f (locally, (z − β)k · unit) and (gβ)k (locally, (z − β)k · another unit) cancel. We extend
f(z)/ (gβ(z))k to be holomorphic at β. But f has only a finite number of zeros in D(0, 1)
since |f(z)| = 1 on ∂D(0, 1) and D(0, 1) is compact. Otherwise the zeros would have an
accumulation point in D(0, 1) which would imply (the Identity Theorem) that f is always
0, contradicting the behavior of f on ∂D(0, 1). Each of these zeros has finite multiplicity,
so we can repeat the process previously described and obtain F (z) = f(z)∏n

j=1(gβj
(z))kj

, a

function holomorphic in a neighborhood of D(0, 1) with |F (z)| = 1 when |z| = 1 and
never vanishing in D(0, 1). The Maximum Modulus Theorem applied to 1/F shows that
F is constant (with modulus 1) in D(0, 1). Thus f(z) = eiθ

∏n
j=1

(
gβj

(z)
)kj , a rational

function.

Note Such a function is called a finite Blaschke product.

3. Suppose that U is an open subset of C. Prove that there is a sequence of compact
subsets of U , {Kn}n∈N, so that

⋃
n∈N Kn = U and Kn ⊆ interior(Kn+1) for all n ∈ N.

Answer If U = C, then take Kn = D(0, n). Otherwise, ∂U 6= ∅, and for z ∈ U , d(z) =
inf{|z−w| : w ∈ ∂U} < ∞. Let {zj}j∈N be a countable dense subset of U (for example, take
the points in U with rational coordinates). Now let Kn be ∪n

j=1D(zj , (1− 1
n+1 )d(zj)). Each

Kn is a finite union of closed discs and is therefore compact. Since D(zj , (1− 1
n+1 )d(zj)) ⊃



D(zj , (1− 1
n )d(zj)) we see that Kn ⊆ interior(Kn+1). We only need to verify that if v ∈ U

then v is in some Kn, and that will be done if we show that v is in some D(zj , d(zj)), since
that disc is the union of the D(zj , (1 − 1

n+1 )d(zj))’s as n → ∞. Since d(v) > 0, there is
zj in D(v, 1

3d(v)) because of the density of the {zj}’s. But d(zj) ≥ 2
3d(v). If not, there

is w ∈ ∂U with |zj − w| < 2
3d(v). Since |v − zj | < 1

3d(v) then |v − w| < d(v) which is
impossible. Therefore, v ∈ D(zj ,

1
3d(v)) ⊂ D(zj , d(zj)).

Comment Another common approach to this problem is write the desired Kn as the
intersection of points in U whose distance to ∂U is ≤ 1

n with D(0, n). Of course U = C
is a simple special case. With this approach, there much be still be some verification that
Kn is closed, and that Kn ⊆ interior(Kn+1). Some use of the triangle inequality is needed.

4. Prove that the annulus A = {z ∈ C : 1 < |z| < 2} and the punctured unit disc
D(0, 1)∗ = D(0, 1)\{0} are not biholomorphic.
Answer Suppose F : D(0, 1)∗ → A were such a biholomorphic mapping. The isolated
singularity of F at 0 is removable by the Riemann Removable Singularity Theorem, since
|F (z)| < 2 always. We extend F to G : D(0, 1) → A. Since G extends F and F is not
constant, G is not constant and holomorphic, and therefore G is open. Let v = G(0).
1 ≤ |v| ≤ 2 since z 7→ |G(z)| is continuous. If v ∈ A then there is w ∈ D(0, 1)∗ with
G(w) = G(0). But some neighborhood of w and some neighborhood of 0 are both mapped
onto a neighborhood of v since G is open. Thus there is ṽ in the neighborhood of v so that
G−1(ṽ) = F−1(ṽ) is at least two points in D(0, 1)∗, which is impossible. If now v ∈ ∂A,
then since G is open at 0, a neighborhood of 0 is mapped onto a neighborhood of v. This
means some point of D(0, 1)∗ is mapped by F outside of A which is impossible. Therefore
there is no mapping F .

5. Let Ω = {z ∈ C : 0 < |z| < ∞}. Determine all holomorphic functions f on Ω such that

|f(z)| < 1
|z|1/2

+ |z|1/2, z ∈ Ω.

Justify your answer.
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Answer f has a Laurent series in Ω: f(z) =
∑n=∞

n=−∞ anzn where an = 1
2πi

∫
∂D(0,R)

f(z)
zn+1 dz

for R > 0. Thus |an| ≤ M(f,R)
Rn by the ML inequality, where M(f,R) = sup{|f(z)| : |z| =

R}. Now M(f,R) ≤ R−1/2+R1/2 so that if n > 0 and R > 1, |an| ≤ (1+R1/2)
Rn . Since n > 0

and is an integer, lim
R→∞

(1+R1/2)
Rn = 0. Thus an = 0 for such n. If now n < 0 and 0 < R < 1,

|an| ≤ (R−1/2+1)
Rn . Since n < 0 and is an integer, lim

R→∞
(R−1/2+1)

Rn = 0. Thus an = 0 for such

n. f must therefore be constant, a0. Further, the constant value has modulus less than
the minimum value of

√
x + 1√

x
on (0,∞). This minimum value occurs at x = 1 and is 2.


