The purpose of the exam is to assess your knowledge of complex variables and to prepare you for our written qualifying exam. The final exam will be given at 1:10 PM on Friday, December 17, in SEC 220. The exam will have at most 5 questions. At least 2 of the exam questions will be taken from the questions written below. No notes or texts should be used on the exam.

- 1. Let \mathcal{P} be the set $\{z = n^{3/4} : n \in \mathbb{N}\}.$
- a) Prove that $\sum_{n=1}^{\infty} \frac{1}{z n^{3/4}}$ diverges for all $z \in \mathbb{C} \setminus \mathcal{P}$.
- b) Prove that the sum $F(z) = \sum_{n=1}^{\infty} \left(\frac{1}{z n^{3/4}} + \frac{1}{n^{3/4}} \right)$ converges for all $z \in \mathbb{C} \setminus \mathcal{P}$ and that F is holomorphic in $\mathbb{C} \setminus \mathcal{P}$. What sort of isolated singularity does F have at each $z \in \mathcal{P}$ and what is the residue of F at each $z \in \mathcal{P}$?
- 2. If f is an entire function which maps every unbounded sequence to an unbounded sequence, then f is a polynomial.
- 3. Show that there's no f holomorphic in D(0,1) (the unit disc) with $\lim_{z\to z_0} f(z) = \infty$ for every $z_0 \in \partial D(0,1)$.
- 4. Let H be the open upper half-plane: $H = \{z \in \mathbb{C} : \text{Im } z > 0\}$. If $g: H \to H$ is holomorphic and g(i) = i, then find and prove some overestimates of |g(2i)| and |g'(i)|.
- 5. Use the Residue Theorem to compute $\int_{-\infty}^{\infty} \frac{1}{1+x^2+x^4} dx.$