Projective space

Most pretentious approach:

Let V be a vector space over a field F. Then we put P(V) to be the set of
all 1 dimensional subspaces of V (the lines). In particular, V can be chosen
to be L?*(R)(important in Quantum Mechanics, among others), or a finite
dimensional vector space F™(important in Combinatorics, for example).

This approach is maybe too difficult to achieve our aim: the study of
CP! - the 1-dimensional complex projective space. So, we will define it first
as an equivalence relation, in the following way:

¢ = {(&pf):apeC
cr = C-{0,0}
(a1, 81) ~ (a2, B2) & 3IN€C : Mo, B2) = (au, 1)
CP! = C*/~

The equivalence classes in CP! are the one dimensional subspaces of C?
over C.

How to define a topology on CP'?

Suppose (a, 3) € C* = [(o, B)] € CP' = [, B8] = [Ma, B)] € CP'. A
unique representative (in some sense) of the class [«, 5] can be described in
the following way:
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So, we can imagine CP' as a copy of C together with a distinct element
[1, 0], which intuitively will be oo.
For z # 0, we also have [z,1] = [1,2]. We can use this to define a topology
on CP!. For z € C*, we make the identification:
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This is a continuous overlap mapping from the open sets C* to C*. Therefore,
if we put C, = CU{[1,0]} and C, = CU{][0,1]} and consider the above
mentioned corespondence between (C, UC,)/f «<— CP' we maybe can view
CP! to be homeomorphic to the one point compactification of C. That is
CP! = C U {oo}, where the neighborhoods of co are of the form {z € C :
|z| > A, A € R}.

Another way to put a topology on CP! is to consider the projection:

c* 5 ¢/ ~=CP!
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and put a topology on CP! such that 7 is continuous. In general, it is taken
the strongest topology in which the mapping 7 remains continuous. This
topology is equivalent to the one just defined.

Yet another equivalent way is to consider the stereographic projection
of the Riemann sphere. This would make CP! = S2.

We consider the following diagram:

(@, 8) € C* — CP' 5 CP' — @ 3 (f(a, B), (v, B))

We would want:

(a1, B1) ~ (a2, B2) = (f(aw,B1),9(a1, 1)) ~ (f(ag, Ba),g(ae, Ba)) &
(a1, B1) = Mag, B2) = (f(an, B1), g(ou, B1)) = p(f (a2, B2), g(az, B2)) =
f(Mag, B2)) = wpf(ag, Be) and g(A(ag, B2)) = png(ag, Ba)

This leads us to considering homogeneous polynomials: P € C|z, w]
is homogeneous iff 3n € N such that VA, z,w € C: P(\z, \w) = A\"P(z,w).
In this case, we say that P is a homogeneous polynomial of degree n.

Example for n=3: P(z,w) = A2* + Bz*w + Czw? + Dw?.

If we return to the diagram we have considered, we may choose F' to be
F([z,1]) = [283, 1], where P;, P, are homegenous polynomials of the same
degree n. That is, we may consider the mappings %, where A, B € CJt] have
the same degree n.

Now, our aim is to make F be a holomorphic mapping, in some sense.
For this, we need to prepare the setting in which we work, that is we want
to view CP! as a Riemann surface (not a Riemann manifold). We say
that X is a n-dimensional topological manifold if X is a topological space
locally homeomorhic to R*. Usually we want to make our life easier so we
will require that the manifold satisfies some additional properties as: it is
Hausdorff, connected, o - compact (X can be written as an ascending union
of compact sets, which will allow us to consider only a countable family of
charts), paracompact.

We made several observartions as for instance that a connected space is
not necessarily Hausdorff. For this we considered the real line from which
we deleted 0 and replaced it by 2 points. The topology changes in that the
neighborhoods of the 2 additional points become the neighborhoods of 0 from
which we delete zero and add the appropriate point. Such a space, remains
connected, but it is not Hausdorff because the 2 additional points cannot
be separated by disjoint neighborhoods. There was another example about
paracompact spaces, but I didn’t understand it.




Suppose that (U, ¢) and (V1) are 2 overlapping charts in a 2-dimensional
manifold. If o™ : p(UNV) — 9 (UN) is holomorphic for any 2 overlapping
coordinate charts (U, ¢) and (V, ), then X is called a Riemann surface.

We say that a continuous mapping f between 2 Riemann surfaces X and
Y is holomorphic if no matter how we choose a point p € X and a chart
(U, ¢) around p and (V1)) around f(p), then o fop™!: pU) — (V) is
holomorphic.

An important, amazingly ‘simple’ result that we mentioned is the Uni-
formization theorem: If X is a simply connected Riemann surface then X
is biholomorphic to D(0,1),C or CP*.

Now, we come back to CP! viewed as S? and cover it by 2 chats - the
projection from the North pole (0,0,1) and from the South pole (0,0, —1).
This is a way to define CP! as a Riemann surface.

We want to determine Aut(CP') = {f : CP' — CP! : f is 1-1, onto and
holomorphic }. We look at the f’s which stabilizes co = f(o0) = 00 = f
restricted to C, is a proper holomorphic mapping. Because f is also bijective,
from what we have proved before (we remember Aut(C)), it follows that f
has the form f(z) = az + b,a # 0. Now we consider the transitive part of
Aut(CP?'), that is the f’s with the property f(oc) = zy € C. If we compose
such an f with ¢(z) = Zfzo (29 % 00), we obtain a mapping which fixes co
(a mapping from the stabilizer of Aut(CP')). This helps us to show that f
has the form f(z) = %1% where (a,b), (c,d) are linearly independent.

T cz+d?
What we have shown (almost):

Aut(CP') = {az-i—l_—z : det( CCL Z ) # O}

CcZ

It can be shown that Aut(CP') is a group and its elements are called
liniar fractional transformations, Mobius transformations, etc. It is also de-
noted PG L,((C) and contains SO(3)(rotations of the unit sphere), SU(1,1)
(automorphisms of the unit disc), Aff(C) = {az + b : a # 0}(automorphisms
of the complex plane).



