Please do all problems.

- 1. Suppose that u and v are the real and imaginary parts respectively of an entire function f. Find all f such that $u=v^2$.
- 2. Suppose U is an open subset of \mathbb{C} . Show that there is a sequence of <u>compact subsets of U</u>, $\{K_n\}_{n\in\mathbb{N}}$ so that $\bigcup_{n=1}^{\infty} K_n = U$ with each K_n <u>contained in the interior</u> of K_{n+1} .
- 3. Suppose that f is an entire function, and that for all |z| > 7, $|f(z)| \le 5e^{(|z|^2)}$. Find explicit positive numbers A and B so that if |z| > A, then $|f''(z)| \le Be^{(3|z|^2)}$
- 4. Suppose $f(z) = \frac{1}{z^2 (e^z 1)}$.
- a) Find and classify (removable, pole, essential) all isolated singularities of f. If the isolated singularity is a pole, tell the order of the pole and the residue of f at the pole.

- b) Compute $\int_{\sigma} f(z)dz$ where σ is the closed curve displayed to the right.
- 5. What is the automorphism group of $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$? That is, describe all biholomorphic mappings from \mathbb{C}^* to itself. Decide whether or not this group is transitive. If it is not, describe the orbit and stabilizer of 1, and also describe the orbit and stabilizer of 2.

Note The *orbit* of a point under a collection of mappings is the set of image points. The *stabilizer* (also called the *stabilizer subgroup* or the *isotropy subgroup*) of a group of bijections is the subgroup which keeps the indicated object (here, a point) fixed.

6. Suppose f is an entire function, and that, for all $z \in \mathbb{C}$, f(z+i) = f(z+1) = f(z) (so f is doubly periodic with periods i and i). Prove that i is constant.