A jump into the twentieth century

Preface

Almost everything in the course we’re concluding could have been taught a century
ago. Some points of view might seem strange to century-old sensibilities, but except for
parts of the homology /homotopy versions of Cauchy’s Theorem, the material likely would
not have surprised Hadamard or Weierstrass or Riemann. They might even consider a few
things we’ve done to be annoyingly and inessentially precise. But complex analysis has
continued to grow and change in more fundamental ways.

Study of complex variables itself has become very technical. It wouldn’t be easy to cite
results in an understandable (or interesting!) way. To me the most excitement has occurred
as geometry and partial differential equations have become involved. Really different
approaches to one complex variable can be found in [K], using ideas from differential
geometry, and in [H], using ideas from partial differential equations, or see [N], which has
ideas from both. I will show you one significant result of twentieth century mathematics in
this course. This result from partial differential equations uses complex analysis directly
and essentially.
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One-half of the left-hand side of this is called % by complex analysts, since you get
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1if f is Z and 0 if you feed in a “function of z alone and not of Z”.
Solving differential equations

Differential equations should have solutions. This was impressed on me during a
discussion with some physicists. Their logic was: differential equations describe physical
situations and the physical situations exist, so the equations must have solutions.

e ODE’s

Ordinary differential equations may describe quantities evolving through time: what
happens to a rock thrown with initial vertical velocity vy from a building of height sy at
time 0 on a planet whose gravitational attraction is a? One model asks us to solve an
initial value problem:
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2z = ¢ with s(0) = so and v(0) = v
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This differential equation has lots of solutions: —Eat2 + (Constant)t + (Constants). The

initial conditions allow us to specify a unique solution.
Now we can systematically study ODE’s, guided by this example and others. But even

d
with ODE’s some care is needed. If the ODE is in standard form, such as d—y = f(z,y)
x

where f is a continuous (possibly complex-valued) function of two variables, then solutions
must exist, but:

* Solutions may not be unique.

d
1t %Y = vV |yl, with y(0) = 0, then one solution is y(x) = 0 for all x.
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If A > 0, then y(z) = {(()%m B A)2 ifﬁ > 924 is also a solution.

* Expect only local solutions.
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The equation d_y = 52 with y(0) = B > 0 has solution y = — (m — %) !
x
with domain (—oo, %) Solutions may “blow up” shortly after 0.

Uniqueness is guaranteed if f(x,y) satisfies a local Lipschitz condition in y which is true
when f is C'. Then theorems (see [CL]) verify that ODE’s with reasonable f’s do have
local solutions uniquely specified by initial conditions.

¢ PDE’s

Thrown rocks seem less intricate than sound waves and heat conduction, which par-
tial differential equations are supposed to model. The I;irst PI;E which doesn’t echo
% + g—?ﬂ Since A (z"y™) =
(n(n — Dy? +m(m — 1)3@2) (a:”_Qym_z), you can hope there is a process to stuff power
series through A and get desired power series. There is such: the Cauchy-Kowalewski
Theorem guarantees that PDE’s with real analytic coefficients and real analytic right-
hand sides (Pf = g, P and g all described real analytically) have local real analytic
solutions. Other PDE’s which come from physical models were studied extensively in the
nineteenth century, and some generalizations were solved in the twentieth: /A becomes
what are called elliptic equations, and the wave and heat equations generalize to what are
called hyperbolic and parabolic equations, respectively.

The initial conditions of ODE’s are replaced by more complicated boundary value
problems. For example, the maximum principle implies that specifying a harmonic function
on the whole boundary of a bounded region guarantees uniqueness: this leads to the
Dirichlet problem. Solutions for specific situations can then be written using complicated
integral operators.

By the middle of this century, great efforts were made to obtain local existence results
for general PDE’s. Probably the most significant single result of the 1950’s was showing
that PDE’s with constant coefficients can always be solved locally. Fourier transform meth-
ods with clever complex integration contours on the transform side were very important.
The big remaining question was: can every PDE be solved?

simple ODE behavior is probably the Laplacian, A =



The Lewy Equation

This linear partial differential equation was first studied by Hans Lewy in the late
1950’s ([L1], [L2]):
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The function f(z,y,s) is a complex-valued differentiable function in some neighbor-
hood of the origin in R?, and g(s) is a real C* function of the one variable s in the same
neighborhood. We will see that there are choices of g for which there is no solution f in
any neighborhood of (0,0, 0).

The trick is to “project” f into a lower-variable situation and recognize the Cauchy-
Riemann equation, and then take advantage of what is known about solutions of that
equation (holomorphic functions). Here is the key ingenious definition:

2T
F(r,s) = \/?/0 e f(\/r cos @, \/rsinb, s) df

What differential equation will F' satisfy? Note the change of variables from rectangular

to “perturbed” polar: { ; = V/rcosf so 22 4+ y? = r. The function F is defined for r and
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s each close to 0 if also r is positive. We compute — for r > 0:
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Here we used the product rule and then moved the differentiation inside the integral.
Integrate the first term on the right-hand side by parts:
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where the parts are

) 27 )
The boundary term (f) (—ie’e)} is 0 because both e and f(\/r cos@,/rsiné, s)
0
are periodic with period 2.
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So far F is defined on (0,d) x (=4,6) for (r,s) € R2. We can shrink § to insure that
f is bounded since any continuous function is bounded in some neighborhood of every
point of its domain. Because the definition of F has /7 outside the integral, we know that
lim F(r,s) = 0. Finally, suppose that wg(s) = h'(s) (that is, h is some antiderivative of

r—0+

mg) and put G(r,s) = F(r,s) — h(s). Then
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We have created a holomorphic function, G, whose domain is (0,d) x (—d,0). As
r — 0%, G(r,s) — h(s) € R: G has continuous real boundary values on a segment of the
r—axis. The Schwarz reflection principle implies that G can be extended to a holomorphic
function in (—6,0) x (—6,6). Here G(r,s) would be defined by G(—r,s) for r < 0 and
G(0, s) would just be h(s).

But then A must be real analytic since it is the restriction of a holomorphic function to
an open subset of one of the coordinate axes. Its derivative must also be real analytic. Thus,
if the Lewy equation has a solution in some neighborhood of the origin in R3, the function
g must be real analytic in some neighborhood of 0 in R. This need not be true*. We have
proved our assertion: the Lewy equation may have no solution in any neighborhood of the
origin for certain C*° g¢’s. Lewy’s equation still has no solution even if the idea of solution
is extended in various complicated ways (to distributions or hyperfunctions or ...). [A]
shows that there are no distribution solutions in a manner similar to what’s here, but both
expositions are close to the original discussion in [L2].

Lewy’s example was not anticipated! See the appendix, please.
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* For example, consider g(s) = { 8 1/ ! 0
if s =
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Appendix

Here’s the entire introduction to [L.2], a paper with no bibliography — which is rather
startling in an academic journal. Also realize that [L1)’s title contains a historic joke: the
“atypical” partial differential equations without solutions turn out to be the collection of
almost all equations!

In dealing with the existence of solutions of partial differential equations
it was customary during the nineteenth century and it still is today in many ap-
plications, to appeal to the theorem of Cauchy-Kowalewski which guarantees
the existence of analytic solutions for analytic partial differential equations.
On the other hand a deeper understanding of the nature of solutions requires
the admission of non-analytic functions in equations and solutions. For large
classes of equations this extension of the range of equation and solution has
been carried out since the beginning of this century. In particular much at-
tention has been given to linear partial differential equation and systems of
such. Uniformly the experience of the investigated types has shown that —
speaking of existence in the local sense — there always were solutions, indeed,
smooth solutions, provided that the equations were smooth enough. It was
therefore a matter of considerable surprise to this author to discover that this
inference is in general erroneous. More precisely, there exist linear partial dif-
ferential equations with coefficients in C'*° which possess not a single smooth
solution in any neighborhood. The example to be presented in this paper is
an equation of first order in three independent variables with complex-valued
coefficients and unknown function, or, what amounts to the same, a system of
two equations of first order for two functions of three variables, all real.
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Some further comments

These are in response to questions asked by several students to whom this material
has been presented. Full answers to these questions would take months to describe.

How was the equation found? How was the analysis of the equation invented?

Lewy’s example was discovered as part of a sequence of investigations which began
towards the end of the nineteenth century. People wanted to learn how complex variables
looked in more than one dimension. The traditional expression in English for this field of
mathematics is several complex variables. Elementary results remain the same, but there is
a distinctly different flavor even in some beginning examples, and there is behavior which
has no analog at all in one complex variable (e.g., there are no isolated singularities in
more than one dimension!).

Lewy wanted to investigate what happens to holomorphic functions in two variables
restricted to the hypersurface Re z = |w|? for (z,w) € C2. This hypersurface is one of the
first non-planar examples one would look at, and therefore can serve as a simple model
for seeing what bending a surface does. Phenomena from differential geometry and partial
differential equations occur almost immediately. These make consideration of equations
like Lewy’s important, and they also supply suggestions for analyzing the equation. Thus
the transition from f to F' used in the proof is not random, but is intimately associated with
the geometry of the hypersurface mentioned — a sort of quadratically distorted mean-value
integral.

Is it just pathological behavior? Does it mean anything?

Almost all linear partial differential equations have this sort of “strange” behavior.
The many equations solved in the nineteenth century and early twentieth century have
much symmetry or many special properties. So, as mentioned before, far from being
pathological, such equations as Lewy’s are average!

Vector fields derived from geometry similar to the way Lewy got his equation have
interesting algebraic properties. Study Lie algebras to learn more about this.

Topics related to the Lewy example turn out to be quite useful in fields outside of
PDE, some of which purport to describe the “real world”:

e Systems of partial differential equations derived from submanifolds of complex mani-
folds as the Lewy equation was have been studied by mathematical physicists to model
particle interactions. Some knowledge of differential geometry is needed to understand
their work.

e The real and imaginary parts of the Lewy operator provide two real vector fields in

0
R3: 9 2y8— and Ew + 2:138—. This is a smooth selection of two directions at every
x s Y s

point. This pair of vector fields does not commute. The trajectories of the vector
fields have interesting qualitative properties. Getting systems of vector fields this way
is a source of useful examples for such areas of study as control theory.
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