Math 503

Midterm Exam

Please do all problems.

1. Suppose that σ is a permutation of the positive integers, \mathbb{N} (so $\sigma : \mathbb{N} \to N$ is a bijection, that is, one-to-one and onto), and that $\sum_{j=1}^{\infty} a_j$ converges absolutely and its sum is S.

Prove that $\sum_{j=1}^{\infty} a_{\sigma(j)}$ converges, and that the sum of this series is S.

2. Suppose that $f(z) = \sum_{n=1}^{\infty} \left(\frac{1}{n!}\right) \left(\frac{1}{z-n}\right)$.

Prove that the sum converges absolutely for all $z \in \mathbb{C} \setminus \mathbb{N}$, where \mathbb{N} is the collection of positive integers. Also prove that the sum converges uniformly on all compact subsets of $\mathbb{C} \setminus \mathbb{N}$ and that the sum is meromorphic in \mathbb{C} . Compute the residue of f at $n \in \mathbb{N}$, explaining why your answer is correct.

Hint In any disc centered at 0, write the sum defining f(z) as an initial sum plus an infinite tail, and then analyze the infinite tail.

3. Suppose W is a discrete closed subset of a connected open subset, U, of \mathbb{C} . Prove that W is countable (it may be finite or infinite, but it is countable!) and that $U \setminus W$ is connected.

4. Describe all uniformly continuous entire functions (with proof).

5. Suppose $U^* = D_1(0) \setminus \{0\}$ (the unit disc with 0 deleted) and A is the annulus of all $z \in \mathbb{C}$ with 1 < |z| < 2. Prove that U^* and A are not biholomorphic: there is no 1-to-1 and onto mapping between these sets so that the map and its inverse are both holomorphic.