Math 503 Mittag-Leffler & Weierstrass 12/3/2007

There are almost magical techniques for proving the existence of meromorphic and
holomorphic functions in C with rigidly specified behavior (poles and zeros). The principal
results are called the Mittag-Leffler Theorem and the Weierstrass Factorization Theorem.
Here are some direct proofs of both results. A few consequences are mentioned.

Mittag-Leffler Theorem Suppose W is a closed, discrete subset of C, and suppose that
for each w € W, a polynomial P, in C[z] with no constant term is selected. Then there
is a meromorphic function f defined in C whose set of poles is W such that the principal
part of f at each w € W (this is the sum of the terms of negative degree in the Laurent

series for f at w) is P, (Z_lw)

Proof If W is finite, then f satisfying the theorem is the sum of the principal parts, a
rational function. Otherwise we first write W as a disjoint union of sets W,, where n is a
non-negative integer. Wy will be those w’s in W with |w| < 1, while, more generally, if
n is at least 1, W, is the collection of w’s in W with n < |w| < n + 1. Note that since
W is discrete and closed, each of the W,,’s has at most finitely many elements. Of course,
some of them may be empty. Then define @, for n > 0by Q,(z) = > P, (z_lw) (this
weWw,
is a finite sum!). If W, is empty, then @,, = 0. These are the sum of the principle parts,
the pieces of the singularities, in each of the annular regions between an integer and its
successor (that integer +1).

Now consider W, for n > 1. All w’s in this W,, must have |w| > n so that the sum
defining @),, is holomorphic in some disc of radius r, where » > n. This is because W,, is
finite, each w of W,, has modulus greater than n, and a minimum of a finite set is one of
the set’s elements (a specific |w| with |w| = r > n). Since @, is holomorphic in D,,(0), it
is equal to a power series centered at 0 valid in all of that disc. The series will converge
uniformly on compact subsets. Therefore there is a partial sum V,, of this power series
(just a polynomiall) so that if |z| < n then |Q,(2) — Va(2)| < 5.

Here is a “recipe” for f: f(z) = Qo(2)+ >_ (Qn(2) — Va(z)). Some verification is necessary.
n=1

e We will show that if z is not in W, the sum defining f converges absolutely. We know
there is an integer N with |z| < N. Break up the sum defining f(z) in two parts, fin(z) +

o (2), Where fin(z) = Qo(2) + 3 (@u(2) = Val2)) and fa(s) = 3= (Qu(2) = Val2)

n=N+1
The series defining fou (the infinite series, and the sum for f;, is finite) converges
absolutely and uniformly for all z with |z| < N. This follows because if n > N > |z|, then
|Qn(2) — Va(z)| < 22. Use the Weierstrass M-test.

e We also now observe that given any disc centered at 0 in C, the series defining f can be
written as a sum of a rational function plus a function which is holomorphic in that disc.
Additionally the rational function has the desired principal parts for all w’s in W which
happen to be in the disc. This of course also follows from the fi, + fous decomposition
described previously. Surely fout is holomorphic in the disc, since it is the sum of a
uniformly convergent series of functions holomorphic in the disc. fi, is a finite linear
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combination of inverse powers of z — w (for those w’s in W which are in the disc) and
of polynomials in z. That’s certainly a rational function! And, of course, the rational
function does have the desired principal parts. [l

Review of the proof The first paragraph “dissects” or breaks up W into parts which
are each finite and nicely chosen geometrically so consequences of the organization lead
to simple estimates. The second paragraph defines the polynomials which will control
the principal parts in the appropriate discs. Then f’s recipe is given, and the next two
paragraphs verify the properties of the recipe.

First comment [ was wrong in class when I asserted that the “bookkeeping” involved
in such a proof would be forbidding. I was thinking algorithmically. I wanted a more
definite “formula” or “procedure” for the function f, that is, for selecting the polynomials
which are involved with its description. Certainly if W is a sequence of w’s whose growth
(rate of increase of |w|) is known, we can use geometric series arguments effectively to
get the polynomials needed to balance the principal parts. But the proof above avoids
that consideration. There is no “effective formula” given, but the phrases “will converge
uniformly” (applied to the power series for a holomorphic function) and “we can choose
a partial sum ... so that” applied to the same series are the existential (?) version of
effectively estimating the geometric series remainders.

Second comment Be aware that the theorem does not assert that ), Pu(2) converges

o0

or that > Qn(z) converges! That might be true (someone might have put in % factors,
n=1

after all). The convergence of the series defining f is delicate. We have altered the terms

subtly so that the series for f does converge in the way we would like.

Third comment A version of Mittag-Leffler is true for any open subset of C, as I declared
in class. But a proof needs some topological “dissection” of the set as a nice increasing
union of compact sets. Some further knowledge of analysis is very useful also, since we need
the analog of partial sums of Taylor series. A result called Runge’s Theorem (also classical)
provides such approximations. But I won’t prove Runge’s Theorem in this course.

Now let’s consider the zeros of an entire function, f. The exponential function has
no zeros (any entire function with no zeros can be written as e9 where g is entire since C
is simply connected). Suppose that f does has zeros or roots. If f has a finite number of
roots, then f can be written as a product of a polynomial and e9(*).

From here on we suppose that f has infinitely many roots. Of course, one such function
is the zero function . f will be that function if the set of roots has an accumulation point.
Let’s also assume that f is not constant. Then the set of roots is countable with no
accumulation point (a closed, discrete subset of C). But we need to think also about
multiplicity. In complex analysis and algebra 23 naturally seems like it has 3 roots which
all happen to be 0. So we will count the multiplicity of the roots, also. Then each complex
number may occur as a root many times, but only finitely many times. Indeed, if {z,} is
the sequence of roots, then we know these Necessary Root Facts:

1. For any w in C, the equation z,, = w is true for only finitely many n’s.

2. For any real A, the inequality |z,| < A is true for only finitely many n'’s.
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In what follows, we’ll assume that these two properties are true. The zero set of a
non-constant entire function with infinitely many roots has both of these properties, and
we will show that these simple necessary conditions are sufficient for the existence of a
non-constant entire f with the sequence {z,} as its zeros, with multiplicities.

If we had only a finite number of roots, then we could easily write a product which
had the desired roots. Suppose we try a straightforward approach: take the sequence {z,}

o0

and write [] (z — z,) and this is very nice except what does it mean?
n=1

Infinite products

We might want to declare that an infinite product converges if the sequence of partial
products (analogous to partial sums) converges. Consider the following examples:

oo
[I ». (This product starts with n = 0.) This candidate for an infinite product is
0

n=
0 even though the terms are unbounded. The first term, 0, “kills” all of the partial

products, which are the products of an initial segment of this infinite product.
oo

11 % The partial products clearly approach 0, so the infinite product, if simply
n=1

defined as a limit of partial products, will be 0. This infinite product is 0 even

though none of its terms are 0.

Consideration of such examples has led to the widespread adoption of a more careful
definition of a convergent infinite product. If there’s no more intricate definition than
the limit of partial products, inserting a 0 anywhere in the product would imply that the
product would “inherit” none of the properties of its factors.

Definition of convergent infinite product

o0
The infinite product [] w, (where the w,’s are all supposed to be complex
n=1
numbers) is said to converge if there is an integer N so that for all n > N, w,, is
k
not 0, and if also lim [] w, exists and is not 0.
k— o0 n=N

With this definition, the individual terms of a convergent infinite product must tend to 1.

o0
It makes sense then to change statements about infinite products from [][ w,, to something

n=1
o0
like [ (1+ ay,). We will investigate how a,, — 0 and when the infinite product converges
n=1

as a consequence.

o
Proposition Suppose that {a,} is a sequence of complex numbers, and that > |a,| is

n=1
o0 o0
finite. Then the infinite products [] (1 + |an|) and [] (1 + a,) both converge.
n=1 n=1

oo
Proof If } |a,| converges, then eventually the terms will be less than %, so let me assume
n=1
that they are all less than 1. But look at log near 1. If |z| < 1, then log(142) = z+ERR(z),
where |[ERR(z)| < 2|z|? (look at the Taylor series and overestimate the tail — this is done
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oo oo

later with more details). Then 10g< IT1+ an> = (Z an) + ERROR where now ERROR
n=1 n=1

is the sum of the possible errors. Remember in this series the terms all have modulus less

than % (possibly a tail of the original series) so that squaring makes terms even smaller.
Therefore the series of errors which make up ERROR must converge. So since log of the
product converges, the product must also. Il

Comment The principal hypothesis of this proposition implies that the product’s con-

vergence is very much like the convergence of an absolutely convergent series. So, in fact,
o0

o0
1@+ an)‘ < JI (1 + |an|) is true. Also rearrangement is allowed (similar to what
n=1 n=1

happens to sums of absolutely convergent series): for infinite products which satisfy this
hypothesis, we can rearrange the factors, the result will always converge, and the value of
the permuted product will be the same. This stability is very useful. All of the infinite

products following this note will “converge absolutely” in the sense of this result.

Proposition If {g,} is a sequence of continuous complex-valued functions on S C C,

and Y |gn(2)| converges uniformly on S, then [] (1 + |gn(2)|) and ] (1 + ¢g.(z)) both
n=1 n=1 n=1

converge and their values are continuous functions on S.
We can say a bit more for holomorphic functions.

Theorem Suppose U is open and connected in C, {g,} is a sequence of holomorphic func-

o0
tions in U, none of which are constant, and suppose that »_ |gn(2)| converges uniformly
n=1

on compact subsets of U. Then F(z) = [] (1 + gn(2)) converges for all z in U and is
1

holomorphic in U. F' is not identically 0, and if (w) = 0, then the order of the zero of F’
at w is equal to the sum of the orders of the zeros of 1 + g,, at w.

I won’t prove this, but let’s talk about it. Suppose z is in U. Since the product
o0

for F(z) converges, there is an N so that [] (1 + gn(z)) converges and is non-zero. If
n=N
F(z) = 0, only finitely many of the (14 g,)’s for n < N can be 0 at z, and (the functions

aren’t constant) these zeros have finite order. So the sum of the orders of the zeros of the
(14 g,)’s must be finite. Then the theorem follows from the previous result and the fact
that uniformly convergent sequences of holomorphic functions have holomorphic limits.
Now we create f. We have a sequence {z,} satisfying the Necessary Root Facts.
oo o0
We initially tried [] (z — z,) but now rewrite the infinite product as [] (1 - (f)) If
n=1 n=1 "
some of the z,’s are 0, I will just multiply the result by zX so I will assume all of the z,,’s to
(o]
be considered aren’t 0. We will generally not be lucky enough to have > |z/z,| converge
n=1
(zn, could just be n, for example). We will need convergence producing factors. The factors
should be ¢SOMETHING gince we don’t want to create more zeros of the resulting function.
oo
Now look at [[ (1 - (—)) ¢mn (). Consider the log of this product. (Given z in C,

n=1 "

4



everything I write is true for sufficiently large n uniformly in a neighborhood of z since
lim |z,| = 00.) So we have a series whose n'P' term is log(l - (zi)) + hp(2). If I can
n—00 n

get hy,’s so this is O(Zin) as n — oo for all 2’s in some disc around 0, then we’d be done.

Fix some positive integer n, and consider the z’s which satisfy |z| < @ Then we

know that log(l - (i)) can be written using a convergent power series: log(l + w) =

+
Z &wﬂ for |w| < 1. We do some calculus to get a partial sum and an error term:
j=1
. . m— 1 1
(=1)w? = Y (- 1)3w7+M Suppose that
7=0

= 5 (-1 =5 (1w +

j=0 J

It

moo il
lw| < 3 and integrate along the line segment connecting 0 and w. We get Y %wﬂ +
7j=1

I %dv We estimate the second term, the error, with ML. Surely [top| - [length| <

|lw|™*+1, and, as for the bottom, |1 —i—v\ > 1—|v| > 1 since |w| < ;. So if we know that
lw| < 1, then log(1 4+ w) = z (GaSihls 1) " wi +ERRORm( ) where |[ERRORyy, (w)| < 2|w|™+1.
m

Now “plug in” — % forw to get log(l — —) = Z

1)J+1

J
(— i) +ERROR,,, (— i) where

m+1

n

‘ERRORm( )‘ <2|—%

Now 31mp11ﬁcat10ns occur. For example, all of the minus signs except one cancel. Since

we are considering only the 2’s where “forget” the hypothesis. The error

L

estimate, again because

m ( z \J
< 5, is easier: log( i) =- % + ERROR,, <_%)
j=1

where ‘ERRORm (—zi)‘ < 2% for our z’s.

21 < (1)" (n and a non-
My (2 \J
zero zp are given, and we can take such an m which I will call my,). Let hy,, (2) = > (z%)

(the minus sign has been dropped since we want the difference to be small).

Weierstrass Factorization Theorem If a sequence {z, } satisfies the Necessary Root
Facts, there is an entire function f whose zero set counting multiplicities is that sequence.
f is a specific infinite product as described above, with a possible zX factor if needed.

The h,,’s described here are involved in the definition of the Weierstrass elementary
factors and the result above, suitably formulated, is usually called the Weierstrass Fac-
torization Theorem. There’s also a similar result for any open subset of C. But now a few
fantastic results which follow from this theorem.

First, an “algebraic” result I mentioned a while ago, proved for C: the quotient field
of the ring of holomorphic functions on C is the set of meromorphic functions on C:

Quotient Field Theorem Any meromorphic function defined on C is a quotient of
holomorphic functions (entire functions) on C.
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Proof Suppose F' is a meromorphic function and suppose that P is its pole set, counted
with multiplicities. So if w is a pole of order N, then w appears N times in the sequence
{zn}. Now create a holomorphic function g whose zero set is exactly P. If w is an
element of the pole set of F', then we know local descriptions of F' and g near w: so
9(2) = (z—w)Nhy(2) and F(2) = (z—w) N hy(z) near w, where h; and hy are holomorphic
near w and their values at w are non-zero (they are local multiplicative units). Thus locally,
(9-F)(z) = h1(2)ha(2) is a unit near w: a non-zero holomorphic function (more precisely,
the product g - F' has a removable singularity at w, which we will think of as “removed”).
Notice that away from the pole set of F', the product g - F' is also holomorphic. Therefore
this product defines a function f which is holomorphic in C. We get F' = 5. |

There’s an amazing result on interpolation which uses both the Weierstrass Factor-
ization Theorem (above) and the Mittag-Leffler Theorem.

Interpolation Theorem Suppose {z,} is a closed discrete sequence in C, and {w,} is
any sequence in C. Then there is an entire function f so that for all n, f(z,) = wy,.

Proof Use the Weierstrass Factorization Theorem to create a function whose zero set is
{zn}. Just as before, the local picture of this function near a point z, in its zero set is
(z — zn)h(2), and h(z,) is non-zero. Then use the Mittag-Leffler Theorem to create a
meromorphic function with simple poles at each z,, and with principal part at z, equal to

( Wn ) ( L ) The product of these two functions has the desired values. Il

h(zn) z—2n

Actually you can do much much better: you can specify arbitrarily a finite initial
“chunk” of the Taylor series of a holomorphic function at any closed discrete sequence of
points in C (just use Mittag-Leffler with higher order singularities and Weierstrass with
higher order zeros). Compare this result with the problem in the 0** homework assignment,
which asserted that a power series can grow arbitrarily fast on the integers. We can now
prove something much more precise.

The classical literature is full of very precise descriptions of factorizations for specific
o0

functions, such as sin(z) = z [] (1 - Z—Z) which Euler believed. This is a convergent
n=1

o0

infinite product since ) Zy converges absolutely and locally uniformly. Since the infinite
n=1

product has the same zeros as sine, the quotient is a non-vanishing entire function. More

work must be done to verify that the quotient is actually 1.

The proofs given here use very classical techniques, and can be extended, with some
effort, to other contexts, such more than one complex variable. There are other methods
to “construct” holomorphic functions, connected with partial differential equations and
with algebraic geometry, which give beautiful insight and can be used in many situations.

I thank Mr. Hernan Castro and Ms. Yusra Naqvi, students in Math 503 during the fall
2007 semester, who allowed themselves to be “volunteered” to read earlier versions of
these pages. Their comments were very useful. They are not to blame for the errors and
infelicities which still remain.



